
HyperFuzzing for SoC Security Validation
Sujit Kumar Muduli

IIT Kanpur
smuduli@cse.iitk.ac.in

Gourav Takhar
IIT Kanpur

tgourav@cse.iitk.ac.in

Pramod Subramanyan∗
IIT Kanpur

spramod@cse.iitk.ac.in

ABSTRACT

Automated validation of security properties in modern systems-
on-chip (SoC) designs is challenging due to three reasons: (i) spec-
ification of security in the presence of adversarial behavior, (ii)
co-validation of hardware (HW) and firmware (FW) as security
bugs may span the HW/FW interface, and (iii) scaling verification
to the analysis of large systems-on-chip designs.

In this paper, we address the above concerns via the development
of a unified co-validation framework for SoC security property
specification. On the specification side, we introduce a new logic,
HyperPLTL (Hyper Past-time Linear Temporal Logic), that enables
intuitive specification of SoC security concerns. On the validation
side, we introduce a framework for mutational coverage-guided
fuzzing of hyperproperties. The three novel aspects of our validation
framework are a novel methodology for incorporating adversarial
behavior through tamper functions, novel coverage-metrics that
guide the fuzzer toward generating useful stimuli, and algorithms
for efficient evaluation of hyperproperty satisfaction. Experiments
on a small but realistic SoC show promising results.
ACM Reference Format:

Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan. 2020. Hy-
perFuzzing for SoC Security Validation. In IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD ’20), November 2–5, 2020, Virtual
Event, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3400302.3415709

1 INTRODUCTION

Platform security primitives in modern systems-on-chip (SoC) de-
signs (e.g., secure boot [23, 46], enclave platforms [3, 44], authen-
ticated firmware update [26]) are implemented by a combination
of hardware and firmware primitives. The security of system and
application software running on these platforms is reliant on the
correctness of these primitives. Therefore, verifying that platform
security primitives satisfy their claimed security requirements is
a crucially important problem. Unfortunately, current techniques
for security analysis of modern SoCs, especially for end-to-end
verification, are mainly limited to expert review and targeted hack-
ing efforts (aka “hackathons”) [11, 36]. These are not scalable, are
automatable only to a limited extent and can miss bugs. There is a
∗
In Memoriam - This paper is dedicated to the loving memory of our doctoral advisor
and co-author Pramod Subramanyan (1984 - 2020).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415709

pressing need for systematic and automated validation techniques
to ensure the security of systems-on-chip platforms.

Unfortunately, automated security validation is a challenging
problem for three reasons. First, we have a specification problem.
Existing property specification languages are often not sufficient
to precisely specify the security properties of a design. This is espe-
cially true in attempting to capture end-to-end security of protocols
(aka “flows”), rather than piecemeal checking of necessary but in-
sufficient conditions that detect known attacks. Second, system
specification and modeling must incorporate an adversary model
and reason about the state changes introduced by adversarial com-
ponents in the SoC. An important complication in SoCs is that
adversarial behavior appears not just at SoC inputs, but may in fact,
it may come fromwithin the SoC. This is due to the incorporation of
untrusted third-party intellectual property (IP) cores [5], untrusted
OEM firmware [42] and untrusted system software [43]. Finally,
scalability of verification remains a difficult challenge. System-level
security evaluation, by definition, requires analysis at SoC-level but
existing techniques for systematic testing and/or formal verification
are not scalable beyond the module-level.

In this paper, we address the above problems by building on
the success of mutational coverage-guided fuzzing for automated
identification of vulnerabilities in the software world and aim to
transplant these success to SoC security validation. The use of
fuzzing is especially attractive from the perspective of scalability
because fuzzing can be accelerated using FPGA/emulation plat-
forms [27], and can be trivially parallelized to a very large number
of cores. Therefore, it has the potential to scale to system-level
validation of large SoCs. That said, fuzzing is not a magic bullet for
SoC security validation. Important research challenges still need to
be solved – end-to-end security property specification, modeling
and reasoning about adversarial behavior and ensuring the fuzzer
generates meaningful input stimuli.

In this paper, we introduce a framework, called HyperFuzzer, to
address the above challenges. We make the following contributions.

(1) To solve the specification challenge, we introduce a new logic
for the property specification called Hyper Past-time Linear
Temporal Logic (HyperPLTL) that is tailored to dynamic
verification of security properties in SoC designs. We provide
examples of SoC security properties such as confidentiality,
integrity, and noninterference expressed in HyperPLTL.

(2) HyperFuzzer introduces new techniques for modeling ad-
versarial tampering as part of the fuzzing loop, enabling the
incorporation of adversarial behavior in the fuzzing process.

(3) We introduce novel coverage metrics that guide the fuzzer
toward inputs that exercise security-critical behaviors of
the SoC. These metrics prioritize the execution of diverse
instructions, and memory and I/O accesses that could trigger
time-of-check to time-of-use (TOCTOU) vulnerabilities.

https://doi.org/10.1145/3400302.3415709
https://doi.org/10.1145/3400302.3415709
https://doi.org/10.1145/3400302.3415709

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan

(4) We evaluate the efficacy of HyperFuzzer on a small but re-
alistic SoC which includes an implement of an authenticated
boot protocol [26, 34]. We demonstrate how system-level
security concerns of this SoC can be effectively validated
using our framework. Results are promising and show that
the framework is effective in identifying security flaws.

All put together, HyperFuzzer provides a systematic framework
for system-level security validation of SoCs.

2 BACKGROUND AND MOTIVATION

This section provides a brief review of coverage-guided fuzzing and
security property specification.

2.1 Mutational Coverage-Guided Fuzzing

The term “fuzzing” refers to randomized testing of programs and
was first described by the seminal work of Miller, Frederiksen and
So [32]. Their work provided randomly generated inputs to com-
monly used utilities in Unix and found that most utilities crashed
on some of these inputs. Modern fuzzers like American Fuzzy Lop
(afl) [47] or libFuzzer [38] have significantly evolved since those
days and are best described as mutational coverage-guided fuzzers.

These fuzzers differ from Miller’s initial work in three ways.
First, they are mutational which means that they start with user-
provided “seed” inputs and modify these to generate new inputs.
Modifications can either be rule-based such as inserting or deleting
bytes, exchanging words, replacing bytes by special values such
as 0xFFFF and 0, or they could be randomized. Two important
advantages of mutational input generation are: (a) generating in-
puts that look similar to the real-world inputs, and (b) providing
expert-guidance during input generation by starting the fuzzer
in interesting locations via carefully-crafted seed inputs. Modern
fuzzers are also coverage-guided. This means they use a coverage
metric to identify which parts of a program (i.e. basic blocks) were
executed when given a particular input. Inputs that increase the
coverage metric are prioritized for mutation. This feedback loop
turns the fuzzer into a genetic algorithm for finding inputs that max-
imize execution coverage. Finally, besides finding crashes, modern
fuzzers can identify other kinds of errors: e.g. memory safety errors
using AddressSanitizer [39] in libFuzzer, performance problems
as in PerfFuzz [28], etc. This is typically done by instrumenting the
source program to record events of interest and providing coverage
feedback based on this instrumentation.

While mutational coverage-guided fuzzing is a well-studied area
that has been widely applied in the context of software security
analysis, applying it to SoC designs poses the following challenges.
AdversaryModeling: In the context of SoC designs, adversarial in-
put generation is more challenging than in software fuzzing because
SoCs consist of both trusted and untrusted modules. For example, a
common scenario is reasoning about the security of hardware prim-
itives in the context of adversarial firmware/software [36]. Another
is ensuring that untrusted third-party IPs are unable to exfiltrate
secrets or modify sensitive values in trusted components [5, 36]. In
these examples, adversarial input is not at the input pins to the SoC.
Instead, some (sub-)component is adversarial and reasoning about
its interactions with the rest of the design is important. Therefore,

enabling the fuzzer to provide meaningful adversarial behavior for
SoC security components is an important challenge.
Property Specification: Software security properties are often
straightforward to specify: no out-of-bounds accesses, no segmen-
tation faults, and so on. There are no analogous equivalents of such
properties in the context of SoC hardware. Therefore, a second
important challenge is precise specification of SoC security so that
the fuzzer can determine if these specifications have been violated.
CoverageMetrics: Recall thatmodern fuzzers are coverage-guided,
which means that each input is executed and a coverage metric
is measured in order to evaluate the quality/fitness of the input.
Software fuzzers like afl and libFuzzer use basic block coverage
for this purpose – this is a metric that guides the fuzzer towards
inputs that execute new (previously unexecuted) basic blocks. This
metric is not applicable to register-transfer level descriptions. As
we will show in our evaluation, a good coverage metric plays a
very important rule in determining the efficacy of the fuzzer. This
leads us to the third challenge in fuzzing for SoC security analysis:
determining meaningful coverage metrics for fuzzing.

2.2 Hyperproperties for Security Specification

Traditional property specification languages such as linear time
temporal logic (LTL) [35], and formalisms based on LTL such as
SystemVerilog Assertions (SVA) [7] can express only trace proper-
ties [2, 12]. Viewed abstractly, let Ψ be the universe of all traces,
then a trace property is a set of traces Φ ⊆ Ψ. A system𝑀 satisfies
Φ if the set of traces corresponding to𝑀 , denoted by Φ𝑀 , is a subset
of Φ. Equivalently,𝑀 does not satisfy a trace property Φ, iff there
exists at least one trace 𝜏cex ∈ Φ𝑀 such that 𝜏cex ∉ Φ.

It is important to note that not all specifications can be expressed
as trace properties. For a simple example, consider determinism
which we will denote by Det: the requirement that a system’s out-
puts be a deterministic function of its inputs. A single trace 𝜏1 can-
not be a counterexample to determinism. We need a pair of traces
(𝜏1, 𝜏2) such that both traces have the same inputs but different
outputs. In fact, determinism is a relation over traces, Det ⊆ Ψ × Ψ.
A system satisfies determinism if every pair of traces of the system
is related according to the relation Det. Determinism, as well as sim-
ilar notions such as observational determinism [37], which states
that a system’s adversary-observable outputs must be a determinis-
tic function of its adversarial inputs, and noninterference [21], all
belong to the class of hyperproperties [12].

Hyperproperties for Security Validation. In this paper, we build upon
the theory of hyperproperties to express security specifications of
systems-on-chip designs. However, this poses unique challenges
when performing dynamic verification (falsification) because a hy-
perproperty that is a 𝑘-ary relation over traces will require 𝑂 (𝑛𝑘)
tuples of traces to be evaluated for satisfaction. This can turn into a
performance bottleneck. A second challenge is in generating traces
that do not lead to vacuous satisfaction. Notice the determinism is
expressed as an implication, a violation requires that the inputs to
two traces be the same at all time steps but the outputs be differ-
ent at some time step. Purely random inputs will very likely lead
to all traces having different inputs, so the property will be vacu-
ously satisfied. All non-trivial hyperproperties have this implication

HyperFuzzing for SoC Security Validation ICCAD ’20, November 2–5, 2020, Virtual Event, USA

structure and therefore input generation becomes an even more
important problem for dynamic falsification of hyperproperties.

3 OVERVIEW OF HYPERFUZZER

We now describe the SoC architecture and threat model considered
in this paper and then provide an overview of HyperFuzzer.

3.1 SoC Architecture and Threat Model

Figure 2 shows the architecture of the SoC used in the evaluation
of this paper. It consists of two microcontroller cores and a number
of accelerators for cryptographic operations. We note that this type
of architecture where a number of intellectual property cores (IPs)
are interconnected via an on-chip fabric is typical of contemporary
SoCs [26, 36, 42].

Threat Model. As is typical, some components in the SoC are un-
trusted. Even some of the trusted components may contain partially
trusted sub-components. For example, 𝜇𝐶1 contains a partially-
trusted instruction memory because some parts of the instruction
memory are user-writeable. SoCs have two main classes of security
requirements. Integrity requires that sensitive assets not be affected
by the behavior of the untrusted components. Confidentiality re-
quires that private data is not leaked to the untrusted components.
Untrusted components can be of multiple types, as discussed below.

Untrusted firmware executes on trusted microcontrollers and
may execute arbitrary instructions, and send arbitrary commands
to the accelerators in an attempt to break confidentiality or in-
tegrity. Note untrusted firmware may attempt to exploit various
types of bugs, ranging from weaknesses in hardware protections to
misconfigurations in trusted firmware.

Untrusted hardware components will send arbitrary com-
mands over the interconnect to other IPs in order to violate the
SoCs security requirements. They may also respond incorrectly to
requests for service from trusted components.

There could be externally-triggeredmalicious behavior such
as fault injection attacks.

Our framework can model all three of the above threats and we
will discuss them in more detail in Section 5.

3.2 HyperFuzzer Overview

Figure 1 provides a bird’s-eye view of the HyperFuzzer framework.
The framework needs three types of input from the verification
engineer: (a) seed tests, (b) definition of adversarial tampering, and
(c) the security property specification. Concretely, the fuzzer works
by first simulating the seed test without adversarial tampering
(steps 1 and 2). Steps 4–7 are repeated for each fuzzer-generated
input. Fuzzer input is used to guide adversarial tampering, and
different inputs result in different instantiations of tampering. For
example, different inputs could correspond to the execution of
different instructions in untrusted firmware code. Each instantiation
of tampering results in a different trace. Security specification is
validated against a pair of traces: one trace with no tampering and
the other including tampering. The security specification (step 3) is
given in the new logic HyperPLTL which is described in Section 4.
Steps 4–7 are the core of the coverage-guided fuzzing process and
are described in Section 5.

4 SECURITY PROPERTY SPECIFICATION

This section describes the property specification logic introduced
in this paper, describes it semantics and provides several examples
of SoC security properties specified in this logic.

4.1 Preliminaries

A transition system𝑀 is the tuple𝑀 = ⟨𝑆, 𝐼 , 𝑅, 𝐿⟩. Here 𝑆 is the set
of states of the transition system. 𝐼 ⊆ 𝑆 is the set of initial states.
𝑅 ∈ 𝑆 × 𝑆 is the transition relation. Our definition of the labelling
function 𝐿 : 𝑆𝑘 → 2AP is non-standard and maps 𝑘-tuples of states
to a set of atomic propositions. If 𝑘 = 1, this devolves into the stan-
dard definition and each state has zero or more atomic propositions
associated with it. However, if 𝑘 > 1, then every 𝑘-tuple of traces
has zero or more atomic propositions associated with it. These
𝑘-tuple labels encode relations over 𝑘-tuples of states. A trace of
the system 𝑀 is a finite sequence of states 𝜋 = 𝑠0𝑠1 . . . 𝑠𝑖 . . . 𝑠𝑁−1
such that 𝑠0 ∈ 𝐼 and for every 0 ≤ 𝑖 < 𝑁 − 1, (𝑠𝑖 , 𝑠𝑖+1) ∈ 𝑅. We will
only consider finite traces in this paper because we are interested in
simulation/emulation-based falsification. We will use the notation
𝜋𝑖 to refer to the 𝑖-th element of the trace 𝜋 . In the above example,
𝜋0 = 𝑠0, 𝜋1 = 𝑠1, and 𝜋𝑖 = 𝑠𝑖 . We will denote sets of traces by Φ.

4.2 HyperPLTL

Figure 3 shows the syntax of the security property specification
logic introduced in this paper. The logic is based on HyperLTL [17]
but makes a couple of significant changes. The first is the exclusive
use of past-time operators [6]: Y stands for yesterday and is the
past-time dual of X (next), O representing once is the dual of F
(future), H (historically) is the past-time dual of G (always) while S
(since) is the dual of U (until). These operators are required because
we are monitoring executions at simulation time and cannot and
cannot access atomic propositions corresponding to future states.

Observe that HyperPLTL formulas must be in prenex normal
form (i.e. all the quantifiers appear at the beginning of the formula)
and universally quantified over some number of traces. A formula
of the form ∀𝜋1 . ∀𝜋2 . 𝜑 is satisfied if every pair of traces satis-
fies the formula 𝜑 . This ability to reason over pairs (or in general
𝑘-tuples) of traces simultaneously allows HyperPLTL to encode var-
ious hyperproperties [12] such as secure information flow [21, 48],
determinism, injectivity and monotonicity [41].

Semantics of HyperPLTL. Satisfaction for HyperPLTL is defined in
with respect to a tuple (Π, 𝑖) for a set of traces Φ. Π is a partial
function that maps trace variables to traces and 𝑖 is an integer that
is less than or equal to the minimum trace length in Φ. We write
(Π, 𝑖) |=Φ 𝜓 if the tuple (Π, 𝑖) satisfies a HyperPLTL formula for the
set of traces Φ. Intuitively, (Π, 𝑖) |=Φ 𝜓 if all of the traces in Φ when
truncated to length 𝑖 satisfy the property𝜓 for the trace assignment
Π. We use the notation Π[𝜋 → 𝜏] to refer to the partial function
that is identical to Π but maps the variable 𝜋 to the trace 𝜏 .

Satisfaction semantics are shown in Figure 4. Most of the satis-
faction rules are straightforward. ∀𝜋. 𝜓 is satisfied if every trace
in Φ satisfies𝜓 . In HyperPLTL formulas, every atomic proposition
is suffixed with the tuple of traces to which it is applied to; an
atomic proposition 𝑎𝜋1,...,𝜋𝑘 is satisfied at step 𝑖 if the 𝑘-tuple of
states defined by (𝜋𝑖1, . . . , 𝜋

𝑖
𝑘
) is labelled with 𝑎. The operator Y𝜑 ,

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan

Seed Tests

1

Tamperer

5

Fuzzer

4

Simulator

2

Trace

Simulator

6
Trace
Trace

Traces
Prop Checker

7

Security Spec

3

Violations

test + adv actions

test w/o adv actions

coverage metrics

Note on color coding: Yellow boxes show new reusable components developed as part of this paper. Blue boxes show existing components
from SoC designs. Violet components are automatically generated. Cyan boxes show where design-specific inputs are required.

Figure 1: Overview of the HyperFuzzer framework.

I
n
t
e
r
c
o
n
n
e
c
t

𝜇𝐶1

𝜇𝐶2

flash

AES

SHA-1

RSA

MMU

RAM

trusteduntrusted partially trusted

Figure 2: Architecture of the SoC used in this work.

𝜓 ::= ∀𝜋. 𝜓 | 𝜑
𝜑 ::= AP𝜋1,...,𝜋𝑘 | ¬𝜑 | 𝜑 ∧ 𝜑 | 𝜑 ∨ 𝜑

| Y𝜑 | O𝜑 | H𝜑 | 𝜑 S𝜑

Figure 3: HyperPLTL Syntax

is satisfied at a time step 𝑖 if the previous time step 𝑖 − 1 satisfies
𝜑 , in other words if 𝜑 was satisfied yesterday. The operator H𝜑

is historically operator that is satisfied if every state in a trace, or
every 𝑘-tuple of corresponding states in a 𝑘-tuple of traces satisfies
formula 𝜑 until the step 𝑖 . The operator O𝜑 is satisfied at time step
𝑖 if 𝜑 was satisfied at least once sometime before time step 𝑖 . The
propositional operators ¬, ∧ and ∨ have their usual meanings.

Given a set of traces Φ, we say that a formula 𝜓 is satisfied by
these traces, written as Φ |= 𝜓 , iff (Π∅, len) |=Φ 𝜓 . Here, Π∅ is the
empty mapping – a partial function whose domain is empty and
len = min {len(𝜏) | 𝜏 ∈ Φ} is the minimum trace length in Φ.

An important benefit of using a logic with only past-time operators
is that satisfaction of a formula can be decided with only O(1) storage
required for traces [4]. This makes it feasible to implement fuzzing
and property evaluation on FPGAs.

4.3 Examples of SoC Security Properties

We now give a few examples of SoC security properties and explain
how they can be specified in HyperPLTL.

(Π, 𝑖) |=Φ ∀𝜋. 𝜓 iff for all 𝜏 ∈ Φ𝑀 : (Π[𝜋 ↦→ 𝜏], 𝑖) |=𝑇 𝜓

(Π, 𝑖) |=Φ 𝑎𝜋1,...,𝜋𝑘 iff 𝑎 ∈ 𝐿(𝜋𝑖1, . . . , 𝜋
𝑖
𝑘
)

(Π, 𝑖) |=Φ Y𝜓 iff (Π, 𝑖 − 1) |= 𝜓

(Π, 𝑖) |=Φ H𝜓 iff for all 𝑗 : 0 ≤ 𝑗 ≤ 𝑖 =⇒ (Π, 𝑗) |= 𝜓

(Π, 𝑖) |=Φ O𝜓 iff there exists 𝑗 ≤ 𝑖 : (Π, 𝑗) |= 𝜓

(Π, 𝑖) |=Φ 𝜓 S𝜑 iff there exists 𝑗 ≤ 𝑖 : (Π, 𝑗) |=Φ 𝜑 and
for all𝑘 : 𝑗 < 𝑘 ≤ 𝑖 =⇒ (Π, 𝑘) |=Φ 𝜓

(Π, 𝑖) |=Φ ¬𝜓 iff (Π, 𝑖) ̸|=Φ 𝜓

(Π, 𝑖) |=Φ 𝜓 ∧ 𝜑 iff (Π, 𝑖) |=Φ 𝜓 and (Π, 𝑖) |=Φ 𝜑

(Π, 𝑖) |=𝑀 𝜓 ∨ 𝜑 iff (Π, 𝑖) |=𝑀 𝜓 or (Π, 𝑖) |=𝑀 𝜑

Figure 4: Satisfaction Semantics for HyperPLTL.

src

src

𝜋1

𝜋2

dst

dst

. . .

. . .

≠?𝜄≈ 𝜄≈ 𝜄≈

Figure 5: Secure information flow. The system starts in a pair of

initial states such that all variables except the source are identical.

The same inputs are given to both traces and property is violated if

there exists a pair of reachable states in which the destination takes

different values.

4.3.1 Secure Information Flow Properties. Secure information flow
properties express the requirement information must not “flow”
from certain sources in the design to certain sinks. When consider-
ing confidentiality, a secure information flow property states that
a secret register value must not flow to an untrusted component.
In the context of integrity, secure information flow requires that
untrusted inputs must not flow to a sensitive register. Both integrity
and confidentiality are common security requirements in modern
SoCs [42, 43]. Confidentiality is important for ensuring the secret
data, such as cryptographic keys, are not output to untrusted com-
ponents (e.g. firmware-readable registers). Integrity ensures that

HyperFuzzing for SoC Security Validation ICCAD ’20, November 2–5, 2020, Virtual Event, USA

untrusted inputs (e.g. from BIOS/system software) cannot over-
write/modify sensitive SoC state registers.

One formulation of secure information flow, stating that infor-
mation cannot from a src to a dst, can be expressed in HyperPLTL
as ∀𝜋1 . ∀𝜋2 . (notsrc≈𝜋1,𝜋2 ∧H (𝜄

≈
𝜋1,𝜋2)) ⇒ H (dst≈𝜋1,𝜋2). In the above,

notsrc≈ is an atomic proposition that holds for a pair of states (𝑠1, 𝑠2)
if the valuation of all state variables except src is equal in these
states. The atomic proposition 𝜄≈ holds if the attacker-controlled
input is identical in a pair of states while dst≈ holds if the value of
destination variable is identical in a pair of states. This property is
illustrated in Figure 5. Note the property is violated if there exist
a pair of initial states where all variables except the source src are
equal, and there is some sequence of attacker inputs 𝜄 that can take
us to a pair of states with differing destinations (dst). If no such
traces exist, then the destination is “independent” of the source, so
there is no information flow from source to destination.

4.3.2 Noninterference. Noninterference captures the notion that
certain adversarial actions must not interfere with the computation
in a system. For example, let us consider fault injection attacks (e.g.
RowHammer [25]) where DRAM bits are flipped by the adversary).
Suppose the SoC implements protection against fault injection
attacks (for instance via error correcting codes), how does one verify
that the implemented protection is sufficient? Noninterference can
express such requirements. It is satisfied if the behavior of the
SoC in presence of adversarial input is identical to the behavior
of the SoC in the absence of adversarial input. This is stated as
∀𝜋1 . ∀𝜋2 . (H (𝜄≈𝜋1,𝜋2) ∧ H (¬fault𝜋1

)) ⇒ H (o≈𝜋1,𝜋2). 𝜄
≈ and o≈ are

atomic propositions which are satisfied when a pair of states have
the same inputs and outputs respectively. ¬fault is satisfied if there
is no fault injected in a particular state.

𝜋1

𝜋2 fault

. . .

. . .

𝜄≈ o≈ 𝜄≈ o≈ 𝜄≈ o≈ 𝜄≈ o≈

Figure 6: Noninterference. Note assumptions (that inputs are equal

at every step) are shown in blue while proof obligations (that out-

puts must be equal at every step) are in red.

Figure 6 depicts noninterference. The two traces shown start-off
identical and receive the same inputs. At some point, a fault is
injected into trace 𝜋2 while there are no faults in the trace 𝜋1. The
property is satisfied if the system’s output in both traces is identical
despite the injection of the fault in trace 𝜋2.

4.3.3 Variants of Secure Information Flow and Noninterference.
Many other security properties can be expressed in HyperPLTL.
While we cannot describe them in detail due to limited space, a few
examples are unique program execution checking [15], speculative
non-interference [22], secure speculation [9], security of authenti-
cated load [34], enclave measurement injectivity [44] etc. Note that
most of the above properties involve only two traces, therefore in
the rest of the paper the presentation will assume 2-trace properties.
Extending the ideas in this paper to more traces is straightforward.

5 FUZZING FOR SOC SECURITY VALIDATION

HyperFuzzer contains three novel ideas in comparison to tradi-
tional mutational coverage-guided fuzzers: (a) the incorporation
of tamperers to model and provide adversarial behavior in SoCs,
(b) the use of novel high-level coverage metrics to guide the fuzzer
towards more meaningful inputs, and (c) using HyperPLTL security
specifications to find violations of security requirements. In the
rest of this section, we first provide a brief overview of the fuzzing
algorithm and then describe the tamperers and coverage metrics in
more detail.

5.1 Algorithm Overview

Algorithm 1 shows the HyperFuzzer algorithm. It takes as input
a HyperPLTL formula 𝜓 which is the security specification to be
checked, a test that exercises some portion of the SoC, an initial pool
of inputs for the fuzzer seeded with a few interesting behaviors, the
tamperer and coverage evaluation functions. Note that the test need
not contain any adversarial behavior, so any functional test can be
used here; automated (functional) test generation techniques [8, 10]
can also be used.

Algorithm 1 HyperFuzzer Algorithm

1: procedure HypFuzz(𝜓 , Test, initPool, Tamper, Coverage)
2: 𝜏0 ← Simulate(Test,⊥)
3: Pool ← initPool
4: covered ← ∅
5: while time budget for fuzzing has not expired do

6: inp← RandMutate(RandomChoice(Pool))
7: 𝜏1 ← Simulate(Test, Tamper(inp))
8: cov ← Coverage(𝜏1)
9: if cov ∩ covered ≠ ∅ then
10: Pool ← Pool ∪ {inp}
11: covered ← covered ∪ cov
12: end if

13: if {𝜏0, 𝜏1} |= ¬𝜓 then

14: report violation
15: end if

16: end while

17: end procedure

First, the SoC is simulated with the input test and a trace of
execution is obtained (𝜏0). Then the fuzzing loop starts on line 5.
Within the loop, the fuzzer repeatedly generates a newly mutated
input based on the inputs in the pool. This input is fed to the
tamperer, which is used during simulate the test in the presence of
adversarial tampering (line 7). This produces the trace 𝜏1 and the
coverage metric is evaluated on this trace (line 8). Viewed abstractly,
the coverage metric is a multiset of events that occurred during
simulation and increased coverage corresponds to either new events
occurring or an existing event occurring more often than previously.
If the test results in “new” coverage (line 9), this input is added
to the pool of interesting inputs. Finally, we check whether the
property is falsified by this pair of traces (line 13), and if so, report
violations.

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan

5.2 Adversarial State Tamperers

We model adversarial behavior in the SoC by the incorporation of
user-provided state tamperers that modify SoC state using fuzzer
input.While the tamperer canmodify state in arbitrary ways, we im-
plemented three kinds of tamperers that model specific adversaries
considered in our threat model. These tamperers are described
below. We emphasize that this is not an exhaustive list of possi-
ble tamperers, and our framework enables the definition of other
arbitrary state tamperers.
Firmware Tamperer: The firmware tamperer models untrusted
firmware components. Fuzzer input is used to generate a random-
ized sequence of instructions that are executed on a specified mi-
crocontroller core. These instructions attempt to interfere with
operation of the SoC, either by sending arbitrary commands to
accelerators, modifying shared memory to conduct time-of-check
to time-of-use (TOCTOU) attacks, or modify microcontroller state
that might be used later by trusted code.
NoC Txn Tamperer: This models an untrusted hardware compo-
nent that is connected to the on-chip network. This tamperer uses
fuzzer input to send arbitrary (randomized) write transactions to
the network. These requests can either modify shared memory (this
models TOCTOU attacks) or send commands to other accelerators
(this models confused-deputy attacks).
Bitflip Tamperer: This models fault-injection attacks on the on-
chip memory components. It periodically selects a random memory
address that has previously not been tampered with and flips a
single-bit in this location. It is used to evaluate the SoC’s resilience
to fault-injection attacks.

5.3 High-Level Coverage Metrics

As discussed in sections 2.1 and 5.1, the fuzzer uses the coverage
measurement as feedback to determine which inputs are interest-
ing, and therefore should be prioritized for further mutation and
execution. The intuition is that inputs for which coverage increases
are those which are likely to exercise previously unexplored parts
of the design, and therefore are more likely to find violations. Recall
that the coverage metric is a multiset of events that occurred during
simulation and the coverage metric defines what an event is in this
definition.

Past work in SoC fuzzing [27] for functional verification has
suggested a MUX coverage metric. In this metric, each event is
the toggling of the select signal for particular MUX in the design.
We experimented with this and similar metrics and found that it
was not helpful in providing useful feedback to the fuzzer as many
MUXes are toggled for most inputs anyway, and MUXes can be
toggled even if there isn’t necessarily any activity in that part of
the design.

Our key insight is that the coverage metric must attempt to directly
measure the impact of adversarial behavior in security fuzzing. Based
on this insight, we propose the following coverage metrics.

(1) Instruction Bigram Events: In this metric, each event is
2-tuple of consecutive executed instruction opcode and pro-
gram counter values. This metric helps the firmware tam-
perer generate new instruction sequences.

(2) NoC Access Bigrams: Each event is a bigram of transac-
tions sent on the on-chip interconnect. This metric helps

the NoC Txn Tamperer generate more interesting tampering
transactions.

(3) Bitflip Read Events: Each event corresponds to when an
SoC component reads a memory address that has been tam-
pered by the Bitflip Tamperer.

Our evaluations shows that these coverage metrics perform
much better than low-level metrics such as MUX/toggle coverage.

6 EVALUATION

This section contains our evaluation of HyperFuzzer.

6.1 Methodology

HyperFuzzer1 builds on the afl [47] fuzzer. We modify afl for
SoC security validation in three ways. First, the execution of the
SoC RTL is done using Verilator [40], an open source tool for
Verilog HDL simulation. Verilator output is instrumented with C++
code to implement the tamperers and collect coverage metrics. We
implemented a C++ library called libprop that evaluates satisfac-
tion of HyperPLTL formulas. afl interfaces with the instrumented
output of Verilator, and the tampers and libprop when fuzzing
with the design. This means we use afl for its mutation engine
and its fork-server while replacing all of its other components.

6.2 SoC Description

The SoC we evaluate is shown in Figure 2. Its architecture and
threat model are described in Section 3.1.

Firmware Tests and Verification Objectives. The SoC had a number
of firmware tests that we reused as seed tests during the fuzzing.
These tests are described below.

aes_test. loads input data into RAM, and then encrypts and de-
crypts it using the AES accelerator. The test passes if the decrypted
data is the same as the original input data. The test control flow
goes through an untrusted firmware routine during the encryption
and decryption operations. We check to ensure a weak form of
noninterference between this untrusted firmware routine and the
rest of the test using the firmware tamperer. The SoC does not
satisfy the noninterference property so expect to (and do) find a
violation.

aes_test_ecc. This is the same as aes_test in terms of func-
tionality. However, we consider a different adversary model of fault
injection attacks into the RAM using the bitflip tamperer. We check
the same property as in (1) with two versions of this test. In the
safe version, the RAM region being used is protected using error
correcting codes (ECC). We ensure that fault injection in the RAM
does not result in the property being violated. In the unsafe version,
RAM is not protected using ECC, so the property is violated.

sha_test. This test computes the SHA-1 hash of an input block
and checks that the result matches an expected value. We use this
test to evaluate a No TOCTOU property [34] – stating that if the
hash matches a particular value then the input data must have a
particular value. The adversarial tampering in this case comes from
the NoC Txn Tamperer. Here too, the test does not actually satisfy
the No TOCTOU property so we find a violation.
1https://github.com/skmuduli92/HyperFuzzer

https://github.com/skmuduli92/HyperFuzzer

HyperFuzzing for SoC Security Validation ICCAD ’20, November 2–5, 2020, Virtual Event, USA

Table 1: Experimental Results.

Test Property Coverage Metric master slave #1 slave #2 slave #3

aes_test Noninterference toggle coverage
#execs 748 715 595 609
#paths 13 18 13 18
#crash 1 1 1 1

high-level coverage
#execs 2257 1629 1664 1614
#paths 231 163 167 164
#crash 1 1 1 1

aes_test_ecc_unsafe Noninterference toggle coverage
#execs 1373 1371 1373 1374
#paths 1 1 1 1
#crash 1 1 1 1

high-level coverage
#execs 18771 18856 18818 18833
#paths 19 22 22 22
#crash 1 1 1 1

aes_test_ecc_safe Noninterference toggle coverage
#execs 1388 1381 1384 1366
#paths 1 1 1 1
#crash 0 0 0 0

high-level coverage
#execs 18578 18529 18591 18598
#paths 33 33 33 33
#crash 0 0 0 0

sha_test Noninterference + No TOCTOU toggle coverage
#execs 3900 3956 3919 3913
#paths 17 23 24 23
#crash 1 1 1 1

high-level coverage
#execs 3938 4013 3901 3954
#paths 80 137 102 73
#crash 1 1 1 1

secureboot
Header checks toggle coverage

#execs 544 337 297 344
#paths 7 7 4 6
#crash 1 1 1 1

high-level coverage
#execs 606 424 385 391
#paths 9 15 16 12
#crash 1 1 1 1

Data Block 1 checks toggle coverage
#execs 442 341 309 309
#paths 6 3 5 5
#crash 1 1 1 1

high-level coverage
#execs 457 345 327 367
#paths 11 15 12 14
#crash 1 1 1 1

Data Block 2 checks toggle coverage
#execs 378 242 240 265
#paths 5 5 3 6
#crash 1 1 1 1

high-level coverage
#execs 494 341 330 340
#paths 11 10 10 11
#crash 1 1 1 1

secureboot. This is an implementation of an authenticated boot
protocol [26, 34]. At boot time, the implementation loads a firmware
image from an input device into the shared RAM, checks the au-
thenticity of the image by using public key cryptography and if
the image is found to be valid, it starts execution of the image. The
authenticity check is performed in three stages: first the header is
checked using the RSA and SHA-1 accelerators, and then the two
data block hashes are checked against values stored in the header
using the SHA-1 accelerators. The security properties we check
are taken from [34]. They check whether protocol state hijacking,

TOCTOU and/or confused deputy attacks is possible. We use the
NoC Txn Tamperer in this case study.

6.3 Results

Table 1 shows the results of running HyperFuzzer on the tests
described in the previous section.We executed four fuzzer processes
in parallel for each test. One process runs in master mode and other
three in child mode. The master process performs deterministic
mutations initially and then switches to random mutations, while
slaves processes perform only random mutations. The processes

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujit Kumar Muduli, Gourav Takhar, and Pramod Subramanyan

periodically synchronize to share interesting inputs. All processes
are run with a timeout of 1000 seconds. Important observations
from the results are as follows.

Verilator’s toggle coverage, which is closely related to the no-
tion of MUX coverage introduced in [27], results in both fewer
executions and fewer paths than the high-level coverage metrics
introduced in this paper for the same time duration of fuzzing. This
is because instrumenting the design to capture MUX coverage in-
troduces significant overhead (because non-trivial designs have a
lot MUXes) slowing down the simulations.

Second, even when normalized for the same number of execu-
tions, toggle coverage leads to fewer new paths being discovered
per execution. A new path in afl terminology is an execution which
led to increased coverage. Many MUXes are always toggled and
random mutations are unlikely to toggle a previously unexercised
MUX. In contrast, our high-level coverage metrics are easier for the
fuzzer to optimize for.

Thirdly, we see that fuzzing is trivially parallelizable. We can
increase our chances of finding a bug by throwing more cores at
the problem. Finally, the experiments show that HyperFuzzer is
effective in finding property violations in the design.

7 RELATEDWORK

SoC validation is a richly-studied problem and due to a lack of space
we cannot survey all of it. We provide a brief overview of some of
the most closely-related work to ours in this section.
RTL Test Generation: Coverage-guided testing of hardware de-
signs is a well-studied area with a rich body of literature. An early
effort is that of Tesiran et al. [45] which used a Markov chain anal-
ysis to guide input generation towards increasing coverage. Many
subsequent efforts have studied various forms of coverage-guided
test generation. The line of work in [19] and [49] uses automated
test pattern generation (ATPG) to generate RTL inputs that are
also used for functional validation. The use of ATPG ensures that
structural coverage metrics can be maximized. HYBRO [30] com-
bines dynamic and static analysis to generate inputs that increase
coverage. HYBRO itself draws upon the idea of whitebox fuzzing
as introduced by SAGE [20] in the context of software security
analysis. Similar ideas have been explored by Ahmed et al. [1] and
Farahmandi et al. [16]. Li et al. [29], and Gent et al. [18] used ant
colony optimization (ACO) to generate inputs that increase cover-
age. A notable effort that is related to our own is rfuzz, which uses
coverage-guided mutational fuzzing via afl to perform FPGA-based
validation of RTL design designs [27]. All of the above efforts are
complementary and orthogonal to ourwork. They focus on the prob-
lem of how to generate inputs given a particular coverage-metric.
However, we argue the real problem in SoC security validation is
in what (hyper-)property to validate, and how to model adversar-
ial behavior? Our work introduces techniques for solving these
two problems, and ideas such as the use of SAT/SMT solvers for
whitebox fuzzing à la SAGE/HYBRO/QUEBS [1, 20, 30], the use of
ACO as in [18, 29], or acceleration via FPGAs [27] can all be readily
integrated into our framework to further improve its performance.
Blackbox andWhitebox Fuzzing: Seminal work on fuzzing was
done by Miller and colleagues [32, 33]. While many subsequent

efforts have proposed a number of improvements to fuzzingmethod-
ology, we cannot discuss all them due to limited space, and instead
direct the reader to McNally et al. [31] who provide an excellent
survey of the area. American Fuzzy Lop (afl) [47] and libFuzzer [38]
are two commonly used software fuzzers. Our work builds on top
of afl but replaces its coverage metrics while adding support for
hyperproperty validation while fuzzing. SAGE [20] and KLEE [8]
both introduced techniques based on symbolic analysis for test
generations. These ideas can be integrated into our framework to
further improve coverage and doing so will be the subject of future
work. Ideas based on concolic execution inspired by KLEE have
been used in the context of firmware security validation [10, 14].
An important difference between these latter efforts and our work
is the use of hyperproperties for security specification and an ad-
versary model that allows modeling of various kinds of attacks,
ranging from malicious firmware to fault injection attacks.
Information Flow Analysis: The idea of information flow veri-
fication dates back to Goguen and Meseguer who introduced the
noninterference [21]. Observational determinism, which is another
secure information flow property was introduced by Roscoe [37].
Clarkson and Schneider [12] introduced the class of specifications
called hyperproperties and observed that noninterference and ob-
servational determinism, as well as other variants of secure infor-
mation flow were all hyperproperties. Clarkson et al. [13] intro-
duced temporal logics for hyperproperty specification, of which
HyperLTL is one example. Finkbeiner et al. [17] introduced model
checking algorithms for HyperLTL. As discussed earlier, HyperLTL
is not suitable for dynamic verification because of its future-time
operators. Subramanyan et al. [42, 43] described techniques for
information flow property checking using symbolic execution and
model checking. In contrast to fuzzing, these techniques are much
less scalable and therefore less applicable to analysis at the SoC
level. We note that commercial offerings exist that can perform
model checking of information flow on hardware designs [24]. We
note that the logic introduced in this paper HyperPLTL can express
more than just information flow and further our framework is able
to perform co-validation of hardware and firmware.

8 CONCLUSION

This paper introduced the HyperFuzzer framework for SoC se-
curity validation based on mutational coverage-guided fuzzing.
HyperFuzzer includes a novel property specification logic Hyper-
PLTL that enables the succinct specification of system-level security
properties in SoCs. We also introduced new methods for modeling
adversarial state modifications in SoCs through the use of tamperers
and demonstrated that these can capture a wide variety of threat
models. We introduced new high-level coverage metrics that help
the fuzzer generate better stimuli. Experiments on our test SoC
showed promising results and identified several vulnerabilities.

ACKNOWLEDGMENTS

This work was supported in part by the Semiconductor Research
Corporation (SRC) under task 2854.001. Views expressed in this
paper are of the authors alone and do not necessarily represent the
views of SRC.

HyperFuzzing for SoC Security Validation ICCAD ’20, November 2–5, 2020, Virtual Event, USA

REFERENCES

[1] Alif Ahmed and Prabhat Mishra. Quebs: Qualifying event based search in concolic
testing for validation of rtl models. In 2017 IEEE International Conference on
Computer Design (ICCD), pages 185–192. IEEE, 2017.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181 – 185, 1985. ISSN 0020-0190.

[3] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative Technology for CPU
based Attestation and Sealing. In Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, volume 13, 2013.

[4] Howard Barringer, Allen Goldberg, Klaus Havelund, and Koushik Sen. Eagle
does space efficient LTL monitoring. Pre-Print CSPP-25, University of Manchester,
Department of Computer Science, October 2003.

[5] Abhishek Basak, Swarup Bhunia, Thomas Tkacik, and Sandip Ray. Security
assurance for system-on-chip designs with untrusted IPs. IEEE Transactions on
Information Forensics and Security, 12(7):1515–1528, 2017.

[6] Marco Benedetti and Alessandro Cimatti. Bounded model checking for past
ltl. In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 18–33. Springer, 2003.

[7] Doron Bustan, Dmitry Korchemny, Erik Seligman, and Jin Yang. SystemVerilog
Assertions: Past, present, and future SVA standardization Experience. IEEE Design
& Test of Computers, 29(2):23–31, 2012.

[8] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Genera-
tion of High-coverage Tests for Complex Systems Programs. In Proceedings of
Operating Systems Design and Implementation, 2008.

[9] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan.
A formal approach to secure speculation. In 2019 IEEE 32nd Computer Security
Foundations Symposium (CSF), pages 288–28815, June 2019. doi: 10.1109/CSF.
2019.00027.

[10] Bo Chen, Christopher Havlicek, Zhenkun Yang, Kai Cong, Raghudeep Kannavara,
and Fei Xie. CRETE: A Versatile Binary-Level Concolic Testing Framework. In
Alessandra Russo and Andy Schürr, editors, Fundamental Approaches to Software
Engineering, pages 281–298, Cham, 2018. Springer International Publishing.

[11] W. Chen, S. Ray, J. Bhadra, M. Abadir, and L. Wang. Challenges and trends in
modern soc design verification. IEEE Design & Test, 34(5):7–22, 2017.

[12] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, September 2010. ISSN 0926-227X.

[13] Michael R Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micinski,
Markus N Rabe, and César Sánchez. Temporal logics for hyperproperties. In In-
ternational Conference on Principles of Security and Trust, pages 265–284. Springer,
2014.

[14] K. Cong, F. Xie, and L. Lei. Symbolic execution of virtual devices. In Proceedings
of the 13th International Conference on Quality Software, pages 1–10. IEEE, 2013.

[15] Mohammad Rahmani Fadiheh, Dominik Stoffel, Clark Barrett, Subhasish Mitra,
and Wolfgang Kunz. Processor hardware security vulnerabilities and their detec-
tion by unique program execution checking. In 2019 Design, Automation & Test
in Europe Conference & Exhibition, pages 994–999. IEEE, 2019.

[16] Farimah Farahmandi, Yuanwen Huang, and Prabhat Mishra. Automated Test
Generation for Detection of Malicious Functionality, pages 153–171. Springer
International Publishing, Cham, 2020. ISBN 978-3-030-30596-3. doi: 10.1007/978-
3-030-30596-3_8. URL https://doi.org/10.1007/978-3-030-30596-3_8.

[17] Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for Model
Checking HyperLTL and HyperCTL*. In Proceedings of the 27th International
Conference on Computer Aided Verification (CAV 2015), pages 30–48, July 2015.

[18] Kelson Gent and Michael S Hsiao. Fast multi-level test generation at the rtl. In
IEEE Computer Society Annual Symposium on VLSI, pages 553–558. IEEE, 2016.

[19] Indradeep Ghosh and Srivaths Ravi. On automatic generation of RTL validation
test benches using circuit testing techniques. In Proceedings of the 13th ACM
Great Lakes symposium on VLSI, pages 289–294, 2003.

[20] Patrice Godefroid, Michael Y Levin, and David Molnar. SAGE: whitebox fuzzing
for security testing. Communications of the ACM, 55(3):40–44, 2012.

[21] Joseph A. Goguen and José Meseguer. Security Policies and Security Models.
In 1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28,
1982, pages 11–20, 1982. doi: 10.1109/SP.1982.10014. URL http://dx.doi.org/10.
1109/SP.1982.10014.

[22] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez.
SPECTECTOR: principled detection of speculative information flows. CoRR,
abs/1812.08639, 2018. URL http://arxiv.org/abs/1812.08639.

[23] James Hendricks and Leendert van Doorn. Secure Bootstrap is Not Enough:
Shoring Up the Trusted Computing Base. In Proceedings of the 11th Workshop on
ACM SIGOPS European Workshop, EW 11, New York, NY, USA, 2004. ACM. doi:
10.1145/1133572.1133600. URL http://doi.acm.org/10.1145/1133572.1133600.

[24] Cadence Inc. JasperGold Security Path Verification App. https://www.cadence.
com/en_US/home/tools/system-design-and-verification/formal-and-static-
verification/jasper-gold-verification-platform/security-path-verification-
app.html, 2020.

[25] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping Bits in Memory Without
Accessing Them: An Experimental Study of DRAM Disturbance Errors. In
Proceeding of the 41st Annual International Symposium on Computer Architecuture,
pages 361–372, Piscataway, NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-4394-4.

[26] S. Krstic, J. Yang, D. W. Palmer, R. B. Osborne, and E. Talmor. Security of SoC
firmware load protocols. In Proceedings of the IEEE International Symposium on
Hardware-Oriented Security and Trust, pages 70–75, 2014.

[27] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik Sen.
RFUZZ: coverage-directed fuzz testing of RTL on FPGAs. In 2018 IEEE/ACM
International Conference on Computer-Aided Design, pages 1–8. IEEE, 2018.

[28] Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Auto-
matically generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, pages 254–265, 2018.

[29] Min Li, Kelson Gent, and Michael S Hsiao. Design validation of RTL circuits
using evolutionary swarm intelligence. In IEEE International Test Conference,
pages 1–8. IEEE, 2012.

[30] Lingyi Liu and Shobha Vasudevan. Efficient validation input generation in rtl by
hybridized source code analysis. In 2011 Design, Automation & Test in Europe,
pages 1–6. IEEE, 2011.

[31] Richard McNally, Ken Yiu, Duncan Grove, and Damien Gerhardy. Fuzzing: the
state of the art. Technical report, DEFENCE SCIENCE AND TECHNOLOGY
ORGANISATION EDINBURGH (AUSTRALIA), 2012.

[32] Barton P Miller, Louis Fredriksen, and Bryan So. An empirical study of the
reliability of unix utilities. Communications of the ACM, 33(12):32–44, 1990.

[33] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekandanda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz revisited: A re-examination
of the reliability of unix utilities and services. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 1995.

[34] Sujit Kumar Muduli, Pramod Subramanyan, and Sayak Ray. Verification of
authenticated firmware loaders. In Proceedings of Formal Methods in Computer-
Aided Design. IEEE, 2019.

[35] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual
Symposium on the Foundations of Computer Science, pages 46–57. IEEE, 1977.

[36] Sandip Ray and Yier Jin. Security policy enforcement in modern soc designs.
In 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pages 345–350. IEEE, 2015.

[37] A. W. Roscoe. CSP and determinism in security modelling. In Proceedings
of the 1995 IEEE Symposium on Security and Privacy, Oakland, California, USA,
May 8-10, 1995, pages 114–127, 1995. doi: 10.1109/SECPRI.1995.398927. URL
http://dx.doi.org/10.1109/SECPRI.1995.398927.

[38] K Serebryany. libfuzzer a library for coverage-guided fuzz testing. LLVM project,
2015.

[39] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitriy
Vyukov. Addresssanitizer: A fast address sanity checker. In Presented as part of
the 2012𝑈𝑆𝐸𝑁𝐼𝑋 Annual Technical Conference, pages 309–318, 2012.

[40] Wilson Snyder. Verilator and systemperl. In North American SystemC Users’
Group, Design Automation Conference, 2004.

[41] Marcelo Sousa and Isil Dillig. Cartesian Hoare Logic for verifying k-safety prop-
erties. In Proc. of the 37th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’16, pages 57–69, 2016. ISBN 978-1-4503-4261-2.

[42] P. Subramanyan and D. Arora. Formal Verification of Taint-Propagation Security
Properties in a Commercial SoC Design. In Proceedings of Conference on Design,
Automation and Test in Europe, 2014.

[43] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung. Verifying Informa-
tion Flow Properties of Firmware using Symbolic Execution. In Proceedings of
Conference on Design Automation and Test in Europe, 2016.

[44] Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev, Srinivas Devadas, and
Sanjit A. Seshia. A formal foundation for secure remote execution of en-
claves. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pages 2435–2450, 2017. doi: 10.1145/3133956.3134098. URL http:
//doi.acm.org/10.1145/3133956.3134098.

[45] Serdar Tasiran, Farzan Fallah, David G Chinnery, Scott J Weber, and Kurt
Keutzer. A functional validation technique: biased-random simulation guided by
observability-based coverage. In Proceedings 2001 IEEE International Conference
on Computer Design, pages 82–88. IEEE, 2001.

[46] Richard Wilkins and Brian Richardson. UEFI Secure Boot in Modern Computer
Security Solutions. In UEFI Forum, 2013.

[47] Michal Zalewski. Technical whitepaper for afl-fuzz. Accessed April, 1, 2017.
[48] Steve Zdancewic and Andrew C Myers. Observational determinism for con-

current program security. In Proceedings of the 16th IEEE Computer Security
Foundations Workshop, pages 29–43. IEEE, 2003.

[49] Liang Zhang, Indradeep Ghosh, and Michael S Hsiao. A framework for automatic
design validation of RTL circuits using ATPG and observability-enhanced tag
coverage. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 25(11):2526–2538, 2006.

https://doi.org/10.1007/978-3-030-30596-3_8
http://dx.doi.org/10.1109/SP.1982.10014
http://dx.doi.org/10.1109/SP.1982.10014
http://arxiv.org/abs/1812.08639
http://doi.acm.org/10.1145/1133572.1133600
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html
http://dx.doi.org/10.1109/SECPRI.1995.398927
http://doi.acm.org/10.1145/3133956.3134098
http://doi.acm.org/10.1145/3133956.3134098

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Mutational Coverage-Guided Fuzzing
	2.2 Hyperproperties for Security Specification

	3 Overview of HyperFuzzer
	3.1 SoC Architecture and Threat Model
	3.2 HyperFuzzer Overview

	4 Security Property Specification
	4.1 Preliminaries
	4.2 HyperPLTL
	4.3 Examples of SoC Security Properties

	5 Fuzzing for SoC Security Validation
	5.1 Algorithm Overview
	5.2 Adversarial State Tamperers
	5.3 High-Level Coverage Metrics

	6 Evaluation
	6.1 Methodology
	6.2 SoC Description
	6.3 Results

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

