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Satisfiability Modulo Fuzzing: A Synergistic Combination of
SMT Solving and Fuzzing
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Programming languages and software engineering tools routinely encounter components that are difficult to

reason on via formal techniques or whose formal semantics are not even availableÐthird-party libraries, inline

assembly code, SIMD instructions, system calls, calls to machine learning models, etc. However, often access

to these components is available as input-output oraclesÐinterfaces are available to query these components

on certain inputs to receive the respective outputs. We refer to such functions as closed-box functions. Regular

SMT solvers are unable to handle such closed-box functions.

We propose Sādhak, a solver for SMT theories modulo closed-box functions. Our core idea is to use

a synergistic combination of a fuzzer to reason on closed-box functions and an SMT engine to solve the

constraints pertaining to the SMT theories. The fuzz and the SMT engines attempt to converge to a model by

exchanging a rich set of interface constraints that are relevant and interpretable by them. Our implementation,

Sādhak, demonstrates a significant advantage over the only other solver that is capable of handling such

closed-box constraints: Sādhak solves 36.45% more benchmarks than the best-performing mode of this

state-of-the-art solver and has 5.72× better PAR-2 score; on the benchmarks that are solved by both tools,

Sādhak is (on an average) 14.62× faster.
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1 INTRODUCTION

Thanks to the tremendous success of SMT solvers in the recent years, formula-based verifica-
tion [Kroening and Tautschnig 2014; Leino 2008], testing [Cadar et al. 2008; Godefroid et al. 2005],
repair [Goues et al. 2019; Mechtaev et al. 2016; Verma and Roy 2017] and synthesis [Polikarpova
et al. 2016; Solar-Lezama 2013; Torlak and Bodik 2013] applications have gained a lot of traction.
Such formula-based techniques encode the program under analysis into a logical formula, in some
fragment of first-order logic, and use SMT solvers to reason on them. The success of such techniques
in the recent years is not only due to better encodings, but also the significant improvements of
SMT solvers.
Perhaps the most significant challenges to formula-driven software engineering systems are

open programsÐprograms where parts of the software system are not formally specified. These
could be due to use of third party libraries, inline assembly code, system calls, etc. At other times,
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some components can be too complex to allow for logical reasoning (like, calls to deep learning
models). Access to these components are mostly available as input-output oraclesÐinterfaces to
query the functions on certain inputs to get the respective outputs. We refer to such functions as
closed-box functions; such functions have also been referred to as oracle calls in prior work [Polgreen
et al. 2022]. The importance to reason through such closed-box functions have been identified in
the recent years [Argyros et al. 2016; Dinges and Agha 2014; Godefroid 2011; Lahiri and Roy 2022;
Mechtaev et al. 2018; Pandey et al. 2019; Polgreen et al. 2022; Păsăreanu et al. 2011].
In this work, we propose a Satisfiability Modulo Theory (SMT) solver, Sādhak, to support

reasoning over such functions. Our algorithm solves SMT constraints including closed-box (CB)
terms by establishing a separation of concernsÐconstraints from SMT theories are solved by an
SMT engine, but constraints corresponding to closed-box functions are compiled to a program and
handled by a fuzzer. Both the SMT engine and the fuzz engine learn from failures; while the SMT
solver extracts out information about the closed-box functions from the partial models returned by
the fuzzer, the fuzzer learns from conflicts within the SMT engine to only pull SMT theory terms
that are relevant for satisfying the closed-box constraints. We term our strategy as conflict-driven
fuzz loop (CDFL) as it uses a fuzzer in synergy with the core SMT engine, thereby adding support
for closed-box functions (CB theory) within the existing set of theories supported by SMT solvers.
List. 1 shows an SMTLIB file [Barrett et al. 2010] containing CB terms (marked in green ); we

provide the declare-cb syntax to declare closed-box functions. The closed-box function f , accept
two 32-bit integers and returns another 32-bit integer. We assume that the semantics of f is not

available explicitly (e. g. as a logical formula); however, an input-output oracle for f is available
that returns a concrete result when queried with some concrete inputs parameters.
Due to the presence of the CB terms, this SMTLIB query cannot be handled by an SMT solver.

Sādhak handles this query by using the core SMT engine to handle the SMT constraints and a
fuzzer to reason on the constraints involving the CB terms. The two engines exchange learnings
from each other’s failures to converge to a solution for the complete set of constraints. With this
strategy, Sādhak responds with a satisfiable assignment within 5.59s. However, Delphi, a recent
solver for CB theories, is unable to solve this example even within 600s. We also tried a popular
strategy [Borzacchiello et al. 2021; Liew et al. 2019; Pandey et al. 2019] of using a fuzzer to reason
on the complete set of SMT constraints as a whole (which is also available with Sādhak as an
additional mode); this too fails to yield a solution within 600s.
Our algorithm is close to the Nelson-Oppen [Nelson and Oppen 1979] algorithm for theory

combination, but exchanges a richer set of terms between the SMT core and the fuzzer allowing
for more effective learning. We define a parametric closed-box (CB) theory that allows developer
of decision procedures to define a translation schema for translating terms from their theory to
program code, that can be consumed by fuzzer.

We build an instantiation of our ideas, Sādhak, within the CVC4 [Barrett et al. 2011] SMT solver.
By building it within the SMT solver, we were able to achieve a more efficient integration with the
core SMT engine and also reuse multiple components from the SMT solver (like the purification
engine, SMT parser etc.). Sādhak is sound, that is any model returned by Sādhak is indeed a
satisfiable assignment. To the best of our knowledge, Sādhak is the first solver that uses a powerful
synergy of SMT solvers and fuzzers to solve SMT constraints with closed-box functions.

Our experimental results show that Sādhak is quite effective at solving SMT formulaewith closed-
box functions, solving 101 of our 107 benchmarks within a timeout of 600s. Sādhak significantly
outperforms the state-of-the-art solver for closed-box functions, solves 36.45% more instances and
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1 (declare-const x (_ BitVec 32))

2 (declare-const y (_ BitVec 32))

3 (declare-const z (_ BitVec 32))

4 (declare-const p (_ BitVec 32))

5 (declare-const q (_ BitVec 32))

6 (declare-const r (_ BitVec 32))

7

8 (declare-cb f ((_ BitVec 32) (_ BitVec 32)) (_ BitVec 32))

9

10 (define-fun ispow2 ((x (_ BitVec 32))) Bool

11 (= (_ bv0 32) (bvand x (bvsub x (_ bv1 32)))))

12

13 (assert (bvugt x y))

14 (assert (and (bvult (_ bv255 32) z)) (bvult z (_ bv65536 32)))

15 (assert (= z ( f x y)))

16

17 (assert (and (ispow2 p) (ispow2 q) (ispow2 r)))

18 (assert (and (bvugt p (_ bv1 32))

19 (bvugt q (_ bv1 32)) (bvugt r (_ bv1 32)) ) )

20 (assert (= (_ bv64 32) (bvmul p q r)))

21

22 (check-sat)

List. 1. A motivating example.

with a 5.72× better PAR-21 score. On benchmarks solved by both Sādhak and the state-of-the-art
solver, Sādhak is 14.62× faster on an average.
Contributions. In this paper we made following contributions:

(1) We introduce a new theory called Closed-Box (CB) theory and provide the requirements for
establishing a sound interface with other theories;

(2) We propose our solving strategy, Conflict-Driven Fuzz Loop (CDFL) in Alg. 1, that allows
solving of CB-theory constraints with other SMT theories;

(3) We build a tool, Sādhak, that augments a current satisfiability solver with support for closed
box functions;

(4) We create a benchmark suite of 95 SMTLIB queries with closed-box constraints that can aid
future investigations in this direction;

(5) We present a set of experiments on our benchmark suite of 95 SMTLIB queries and 12 SMTLIB
queries from DELPHI [Polgreen et al. 2022] to demonstrate the utility and effectiveness of
Sādhak.

Terminology. In this paper, we present Sādhak, that is implemented within an SMT solver for
handling closed-box functions. An SMT solver has many components (like the parser, simplifier,
purification engine etc.); we use the term SMT Engine to refer to the core of an SMT solver that
decides the satisfiability of a given set of constraints across multiple first-order theories. We use
the term fuzz engine to refer to the fuzzing-based solver within Sādhak that includes a constraint

1PAR-2 score is used scoring solvers in SAT competitions [Balyo et al. 2017]. It is calculated by adding runtimes for solved

instances with two times the timeout for unsolved instances and then dividing it by the number of benchmarks. Lower

PAR-2 score indicates better performance of the tool.
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Fig. 1. Closed-Box Function based active learning.

compiler to compile constraints into a program and then fuzzes the program. The term fuzzer is
used to refer to off-the-shelf fuzzers.

2 OVERVIEW

Our tool, Sādhak, is built to reason on constraints involving closed-box functionsÐfunctions for
which no formal specifications are available. However, one may query these closed-box functions
as an input-output oracle: querying a closed-box functions on a certain set of inputs returns the
respective output. Such functions have also been referred to as oracle functions in some prior
work [Polgreen et al. 2022].

Consider the SMTLIB query shown in List. 1. For the sake of clarity, we show the constraints
from this query as a set of constraints in Eq. (1). The function 𝑖𝑠𝑃𝑜𝑤2 checks if a given input is
power of 2 or not using a bitwise operation. The lambda notation 𝜆𝑥. 𝐺 defines a function that
accepts an input 𝑥 ; the function is invoked by replacing the actual argument by all free instances
of 𝑥 in the function łbody" 𝐺 .

These constraints involve a call to the closed-box function f (), and hence, it cannot be handled
by a regular SMT solver. We assume that we can query the closed-box implementation of f(), i.e.
we can query f() for the output on a provided set of concrete inputs. We use ⟦f()⟧ to denote a
concrete function invocation of the closed-box function f. We show the C program for the function
that we use as our closed-box function in List. 3.

f (𝑥,𝑦) > 255 ∧ f (𝑥,𝑦) < 65536 ∧ (𝑥 > 𝑦) (1)

∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)

∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 )

∧ (𝑝 × 𝑞 × 𝑟 = 64)

∧ (𝑖𝑠𝑃𝑜𝑤2 = 𝜆𝑥 .((𝑥 & (𝑥 − 1)) = 0))

We now discuss about three strategies to solve constraints with closed-box functions and discuss
their merits and demerits.

2.1 Strategy #1: SMT Solver-Driven Active Learning

Fig. 1 provides an outline of this strategy [Polgreen et al. 2022]. In this strategy, the SMT solver
proposes a partial model by assuming the closed box function as an uninterpreted function. The
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1 uint32_t isPow2(uint32_t x);

2

3 int main() {

4 uint32_t x, y, p, q, r;

5 READ_INPUT(x, y, p, q, r);

6

7 if(255 < f(x,y))

8 if(f(x,y) < 65536)

9 if (x > y)

10 if (p > 1 && q > 1 && r > 1)

11 if (isPow2(p) && isPow2(q) && isPow2(r))

12 assert(0);

13

14 return 0;

15 }

16

17 uint32_t isPow2(uint32_t x) {

18 return 0 == (x & (x - 1));

19 }

List. 2. Translation of all constraints in Eq. (1) to be fuzzed.

1 uint32_t f (uint32_t a, uint32_t b) {

2 return a * b;

3 }

List. 3. Closed-Box function f() used in List. 1.

possible model is checked against the closed-box functionsÐif the model is verified against the
closed-box functions, the model is returned. Else, the result from the closed box operation is used
to construct a counterexample and propagated to the SMT solver. The SMT solver learns from this
failure by adding an additional constraint to capture the behavior of the closed-box function on the
previous partial model. Then, it proposes a new partial model to be checked against the closed-box
functions. This process is repeated till a partial model is verified against the closed-box functions.
For our example, modelling the closed-box function f() as an uninterpreted function (UF), the

SMT solver comes up with the following model: 𝑝 = 0, 𝑞 = 0, 𝑟 = 0, 𝑥 = 1, 𝑦 = 0, 𝑓 (𝑥,𝑦) = 𝜆𝑥,𝑦. 127.
This strategy, then, tries to verify this model with respect to the closed-box function by checking
whether 𝑓 (1, 0) = 127 is consistent. The closed-box function is executed with the given arguments:
in this case, ⟦𝑓 (1, 0)⟧ returns 0. Thus, the candidate model proposed by the SMT solver is not valid
and the SMT solver learns a new fact that 𝑓 (1, 0) = 0. The SMT solver, now, attempts to learn a
new model that also satisfies the learnt fact and this process repeats until the closed-box oracle
verifies the proposed candidate model is consistent w.r.t 𝑓 ().

In this strategy, the learning is inefficient as every counterexample eliminates a very few candidate
models.

2.2 Strategy #2: A Fuzz-Only Strategy

An alternative strategy could be to completely eliminate the SMT solver and only use a fuzzer to
search for satisfiable models [Borzacchiello et al. 2021; Liew et al. 2019; Pandey et al. 2019]. Such
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Table 1. Sādhak’s state at iteration 1.

Iteration #1

Fuzz Engine 𝑧 = f𝑐𝑏 (𝑥,𝑦)

Partial Model 𝑥 = 0, 𝑦 = 0, 𝑧 = 0

SMT Engine
𝑧 = f𝑢𝑓 (𝑥,𝑦) ∧ (𝑧 > 255) ∧ (𝑧 < 65536) ∧ (𝑥 > 𝑦)
∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)
∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 ) ∧ (𝑝 × 𝑞 × 𝑟 = 64)

Table 2. Sādhak’s state at iteration 2.

Iteration #2

Fuzz Engine 𝑧 = f𝑐𝑏 (𝑥,𝑦) ∧ (𝑥 > 𝑦)

Partial Model 𝑥 = 1, 𝑦 = 0, 𝑧 = 0

SMT Engine

𝑧 = f𝑢𝑓 (𝑥,𝑦) ∧ (𝑧 > 255) ∧ (𝑧 < 65536) ∧ (𝑥 > 𝑦)
∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)
∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 ) ∧ (𝑝 × 𝑞 × 𝑟 = 64)
∧ f𝑢𝑓 (0, 0) = 0

Table 3. Sādhak’s state at iteration 3.

Iteration #3

Fuzz Engine 𝑧 = f𝑐𝑏 (𝑥,𝑦) ∧ (𝑥 > 𝑦) ∧ (𝑧 > 255)

Partial Model 𝑥 = 65536, 𝑦 = 1, 𝑧 = 65536

SMT Engine

𝑧 = f𝑢𝑓 (𝑥,𝑦) ∧ (𝑧 > 255) ∧ (𝑧 < 65536) ∧ (𝑥 > 𝑦)
∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)
∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 ) ∧ (𝑝 × 𝑞 × 𝑟 = 64)
∧ f𝑢𝑓 (0, 0) = 0 ∧ f𝑢𝑓 (1, 0) = 0

proposals translate the complete set of constraints to a program and submit it to a fuzzer to find a
set of inputs that can reach a łgoalž program location. This strategy reduces a satisfiability query
on a set of constraints to a reachability query on a program.

For example, List. 2, shows a translation of constraints in Eq. (1) to a C program. Note that inputs
that reach the assert(0) (crashing input) will also satisfy the set of SMT constraints and hence,
can be extracted as a satisfying assignment.
However, this scheme, too, is inefficient as it requires the fuzzer to get past complex relational

constraintsÐconstraints that an SMT solver is more adept at solving.

2.3 Strategy #3: Conflict-Driven Fuzz Loop (CDFL)

In contrast to the above strategies, our proposal combines an SMT solver and a fuzzer in a synergistic
combination. The SMT solver loads the constraints corresponding to the respective SMT theories
while the fuzzer only reasons on the closed-box functions. The fuzzer starts by creating a partial
model: if this models from the fuzzer conflicts with the constraints within the SMT solver, the
fuzzer analyzes the conflict and lazily borrows only the relevant constraints that led to the conflict.
It, then, proposes a new model to the SMT solver. This process continues till the fuzzer is able to
construct a model that is consistent with the constraints loaded in the SMT solver. As the fuzzer
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Table 4. Sādhak’s state at iteration 4.

Iteration #4

Fuzz Engine 𝑧 = f𝑐𝑏 (𝑥,𝑦) ∧ (𝑧 > 255) ∧ (𝑥 > 𝑦) ∧ 𝑧 < 65536

Partial Model 𝑥 = 256, 𝑦 = 1, 𝑧 = 256

SMT Engine

𝑧 = f𝑢𝑓 (𝑥,𝑦) ∧ (𝑧 > 255) ∧ (𝑧 < 65536) ∧ (𝑥 > 𝑦)
∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)
∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 ) ∧ (𝑝 × 𝑞 × 𝑟 = 64)
∧ f𝑢𝑓 (0, 0) = 0, f𝑢𝑓 (1, 0) = 0, f𝑢𝑓 (65536, 1) = 65536

Fig. 2. Overview of Sādhak’s architecture.

iteratively proposes new models guided by conflicts from the SMT solver, we refer to this strategy
as conflict-driven fuzz loop (CDFL).
We show an overview of our strategy, conflict-driven fuzz loop (CDFL), in Fig. 2. We, now,

describe its operation via an example:

Theory Segregation. The set of constraints are segregated into individual termsÐthose that cor-
respond to the closed-box functions and those pertaining purely to SMT theories. All the terms
corresponding to the SMT theories are dispatched to the SMT engine. All constraints corresponding
to closed-box (CB) terms are handled as follows:

(1) a copy of the CB constraints are translated to UF (uninterpreted functions) and handled by
the SMT engine. This ensures that any candidate model from the SMT solver satisfies the
function axioms on the CB functions. We designate the instance of the closed-box function
within the SMT engine as f𝑢𝑓 (as the closed-box function is being interpreted as an UF in
these constraints.

(2) the CB constraints are added to the queue of the fuzz engine. We denote the instance of the
closed-box function within the fuzz engine as f𝑐𝑏 .
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After theory segregation on the set of constraints in Eq. (1), the segregated constraints are shown
in Tab. 1 for SMT and fuzz engines.

Fuzz Solving. Sādhak constructs a program from the closed-box (CB) constraints and attempts to
construct a partial candidate model. The CB constraints in Tab. 1 get translated to a C program
shown in List. 4. The program is compiled to an executable and is fuzzed with invocations to the
closed-box functions at the respective locations.
For our example, the fuzz engine finds a crashing input (𝑥 = 0, 𝑦 = 0, 𝑧 = 0) for the C program.

The candidate partial model (𝑥 = 0, 𝑦 = 0, 𝑧 = 0) is then propagated to the SMT engine.
Sādhak also learns some facts about the CB functions from the partial model communicated

from the fuzz engine. For our example, Sādhak learns that (f𝑢𝑓 (0, 0) = 0), which is added to the
SMT engine constraints queue.

SMT Theory Solving. The SMT engine, then, attempts to search for a completion of the partial
candidate model. The respective theory solvers within the SMT engine handle the respective
constraints to search for a model. If a completion is found, the full model is returned; else, we
progress to the next stage.
In our example, the SMT solver returns unsatisfiable and we progress to the next stage.

Conflict Analysis. In case the SMT engine returns unsatisfiable for the partial model, we analyze the
conflict to identify the conflicting terms. The fuzz engine learns from this conflict and augments its
set of constraints with these conflicting terms.
For our example, the partial model (𝑥 = 0, 𝑦 = 0, 𝑧 = 0) from the fuzz engine led to a conflict

due to the constraint (𝑥 > 𝑦). The conflicting clause for fuzz engine’s partial model is highlighted
with red in Tab. 1. The conflict learnt from this phase is propagated to fuzz engine to find a
new partial candidate model which will satisfy (𝑥 > 𝑦).

Repeat. The fuzz engine is fired again with the augmented set of constraints and the loop is repeated.
Tab. 2 shows the state of theory solvers and fuzz engine at iteration #2 after conflict propagation
from the previous iteration. The constraints learnt from previous iteration is highlighted with
blue . The constraint set at the fuzz engine’s queue in Tab. 2 gets translated to List. 5 and is fuzzed
for another model.
Let us walk through the next set of iterations en route to reaching a satisfiable model:

• The fuzz engine now returns another candidate partial model (𝑥 = 1, 𝑦 = 0, 𝑧 = 0) and
propagates it to the SMT engine. As the set of constraints contains f𝑢𝑓 (𝑥,𝑦) = 𝑧 and the
partial model includes (𝑥 = 1, 𝑦 = 0, 𝑧 = 0), Sādhak learns a new fact f𝑢𝑓 (1, 0) = 0. This
time the SMT engine finds that this partial model conflicts with the constraint (𝑧 > 255) in
the SMT engine’s queue (see Tab. 2). The SMT engine now propagates this new conflicting
constraint to the fuzz engine.
• In iteration #3, the fuzz engine’s queue in Tab. 3 gets translated to a C program as shown in
List. 6 and fuzzed for a model. The candidate partial model (𝑥 = 65536, 𝑦 = 1, 𝑧 = 65536) is
propagated to the SMT engine and Sādhak also learns the fact f𝑢𝑓 (65536, 1) = 65536 from
this partial model. Now the partial model conflicts with the constraint (𝑧 < 65536) in the
SMT engine’s queue (see Tab. 3).
• In iteration #4, the fuzz engine tries to find another candidate partial model for the set of
CB constraints at fuzz engine’s queue in Tab. 4. The constraint set at fuzz engine’s queue
is translated into a C program shown in List. 7 and fuzzed for a new model. This time a
candidate partial model (𝑥 = 256, 𝑦 = 1, 𝑧 = 256) is found and propagated to the SMT engine.
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1 uint32_t f (uint32_t, uint32_t);

2

3 int main() {

4 uint32_t x,y,z;

5 READ_INPUT(x,y,z);

6

7 if(z == f(x,y))

8 assert(0);

9

10 return 0;

11 }

List. 4. Program generated by fuzz-engine at iter-

ation #1.

1 uint32_t f (uint32_t, uint32_t);

2

3 int main() {

4 uint32_t x,y,z;

5 READ_INPUT(x,y,z);

6

7 if(z == f(x,y))

8 if (x > y)

9 assert(0);

10

11 return 0;

12 }

List. 5. Program generated by fuzz-engine at iter-

ation #2.

1 uint32_t f (uint32_t, uint32_t);

2

3 int main() {

4 uint32_t x,y,z;

5 READ_INPUT(x,y,z);

6

7 if(z == f(x,y))

8 if (x > y)

9 if(z > 255)

10 assert(0);

11

12 return 0;

13 }

List. 6. Program generated by fuzz-engine at iter-

ation #3.

1 uint32_t f (uint32_t, uint32_t);

2

3 int main() {

4 uint32_t x,y,z;

5 READ_INPUT(x,y,z);

6

7 if(z == f(x,y))

8 if (x > y)

9 if(z > 255)

10 if(z < 65536)

11 assert(0);

12

13 return 0;

14 }

List. 7. Program generated by fuzz-engine at iter-

ation #4.

This partial model does not conflict with any of the constraints in other SMT theory solvers.
The SMT engine finally returns a complete model (𝑥 = 256, 𝑦 = 1, 𝑧 = 256, 𝑝 = 2, 𝑞 = 8, 𝑟 = 4).

Our algorithm establishes a separation of concerns: the SMT engine attempts to solve the SMT
constraints (in what it is adept at), the fuzz engine uses fuzzing to search for models satisfying the
closed-box constraints (that cannot be handled by the SMT solver).
Our strategy has the following advantages:

• The fuzzer is not overloaded with a large number of complex SMT constraints (in contrast to
strategy #2), but only a smaller set of constraints that are relevant to the CB constraints;
• The SMT solver exchanges a rich set of constraints with the fuzzer to allow for efficient
learning (in contrast to strategy #1);
• The fuzzer gets the advantage of lemma learning capabilities of the SMT engine; in many
cases, instead of the base constraints, more informative lemmas learnt by the SMT engine is
pulled into the fuzzer;
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Table 5. Constraints solved by fuzzing in fuzz-only and CDFL mode.

Fuzz-Only CDFL

f𝑢𝑓 (𝑥,𝑦) > 255 ∧ f𝑢𝑓 (𝑥,𝑦) < 65536

∧ (𝑥 > 𝑦) ∧ (𝑝 > 1) ∧ (𝑞 > 1) ∧ (𝑟 > 1)
∧ 𝑖𝑠𝑃𝑜𝑤2(𝑝) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑞) ∧ 𝑖𝑠𝑃𝑜𝑤2(𝑟 )
∧ (𝑝 × 𝑞 × 𝑟 = 64)

𝑧 = f𝑐𝑏 (𝑥,𝑦) ∧ (𝑥 > 𝑦)
∧ (𝑧 > 255) ∧ 𝑧 < 65536

• The fuzzer can leverage the support for theory combination within the SMT solver. Thanks
to theory combination algorithms, Sādhak can support multiple theories.

For example, in the fuzz-only mode, the fuzzer needs to find a satisfying solution for the full
set of constraints (as shown in the first column of Tab. 5). However, the set of constraints that the
fuzzer needs to handle, even in the last itertaion of Sādhak (shown in second column of Tab. 5), is
much smaller.

Readers may find similarities of our algorithm with the popular Nelson-Oppen theory combina-
tion algorithm. However, while Nelson-Oppen [Nelson and Oppen 1979] only exchanges interface
equalities across the decision procedures, Sādhak exhanges a richer set of constraints between
the core SMT engine and the fuzz engine, allowing the fuzzer to propose better candidates for the
partial models.

To summarize, strategy #1 (SMT-driven active learning strategy) leads to inefficient learning as
it communicates via examples and, most often, may fail to generalize. However, Sādhak uses a
theory combination stratergy inspired by the Nelson-Oppen to communicate via constraints over
interface variablesand lead to more efficient learning. On the hand, strategy #2 (fuzz-only strategy)
translates the whole set of constraints into a program to be fuzzed, while Sādhak lazily adds only
the relevant constraints to the program to be fuzzed.

Sādhak solves the above example (List. 1) in less than 6 seconds. However, both Delphi [Pol-
green et al. 2022] (a tool that uses the active learning strategy) and the fuzz-only strategy (imple-
mented within Sādhak), fail to solve the example within a 10 min (600s) timeout.

Sādhak implements both the fuzz-only and the CDFL strategies, but we found the CDFL strategy
to be superior and is the focus of this paper.

3 THE THEORY OF CLOSED-BOX FUNCTIONS (CB THEORY)

Sādhak provides support for including closed-box functions with any theories supported by the
baseline SMT engine. To allow for efficient learning andmore informative exchange of facts, Sādhak
allows the developer of decision procedures a mechanism to exchange a richer set of interface
constraints. This improves the fuzzer to learn better from the failures of the SMT engine, leading to
faster convergence. Without this, the fuzz engine will only be able to exchange information via
interface equalities (as in the Nelson-Oppen algorithm for theory combination).

CB Theory. Given a first-order theory T , the theory fragment for closed-box functions over the
theory T (denoted as 𝐶𝐵T ) has the following signature:

Σ𝐶𝐵T = ⟨ST , CT , FT , F
𝑐𝑏
T , BT ,RT⟩

where,

• ST : set of sorts in theory T ;
• CT : set all (sorted) constants in T ;
• FT : set of all (sorted) function symbols in T ;
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Table 6. Example of a bit-vector theory translation schema (R𝐵𝑉 ) defined in CB theory.

Symbol BitVector expression C language expression

Sort (_ BitVec 8) uint8_t

(_ BitVec 32) uint32_t

(_ BitVec 64) uint64_t

Function
(bvadd a b) a + b

(bvand a b) a & b

(bvmul a b) a * b

(bvuge a b) (a >= b)

Predicate (bvugt a b) (a > b)

(bvult a b) (a < b)

• F 𝑐𝑏
T : set of (sorted) closed-box functions and each function’s sort is constructed from the

sorts in 𝑆T ;
• BT : predicates from theory T ;
• RT : schema for translating sorts and expressions in T to a program code.

We lift the theory of closed-box functions over a set of first-order theories, T1, . . . , T𝑛 , by taking

a point-wise union over the respective components in the signature. Formally, CB{T1,...,T𝑛 } =

⋃𝑛
𝑖=1 CBT𝑖 has a signature

Σ𝐶𝐵{T1,...,T𝑛 } = ⟨S, C, F , F
𝑐𝑏, B, R⟩

where, S =

⋃𝑛
𝑖=1 ST𝑖 , C =

⋃𝑛
𝑖=1 CT𝑖 , F =

⋃𝑛
𝑖=1 FT𝑖 , F

𝑐𝑏
=

⋃𝑛
𝑖=1 F

𝑐𝑏
T𝑖
, B =

⋃𝑛
𝑖=1 BT𝑖 and R =

⋃𝑛
𝑖=1 RT𝑖 . For simplicity we drop the superscript of 𝐶𝐵 {T1,...,T𝑛 } and use 𝐶𝐵 in the future references.

Translation Schema. Any SMT theory that intends to operate efficiently with closed-box functions
needs to provide the following:

• Augmented CB vocabulary (ST , CT , FT , BT ). The CB vocabulary can be extended to
include a subset of the vocabulary of the given theory. This provides a richer set of interface
constraints for information exchange between the SMT and fuzz engines.
• Translation schema (RT ). For the augmented CB vocabulary from the theory, a translation
schema needs to be provided to translate SMT constraints into program code. The translation
schema contains two types of translations:
ś Sort translation: This describes how sorts in a theory T are translated to program types;
ś Term translation: This describes how terms in a theory T are translated to program
expressions;

Sādhak includes a complete translation schema for the BV (bitvector) theory. Tab. 6 shows some
examples from the translation schema. We omit details for brevity.
We require that the function symbols F 𝑐𝑏 are functional, i.e. they return a unique, deterministic
value for a given set of arguments. The closed-box functions can also be partial functions (that may
not guarantee termination) but must be deterministic. Formally, we assume the axiom of function
congruence on any closed-box function symbol 𝑓𝑐𝑏 ∈ F

𝑐𝑏 (Eq. (2)):

∀𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛 . (𝑥1 = 𝑦1) ∧ · · · ∧ (𝑥𝑛 = 𝑦𝑛) → 𝑓𝑐𝑏 (𝑥1, . . . , 𝑥𝑛) = 𝑓𝑐𝑏 (𝑦1, . . . , 𝑦𝑛) (2)

The translation schema and the implementations of the closed-box functions must ensure that
the above axiom is satisfied. If this condition is met, it is easy to see that formulae in the CB theory
satisfy the following property:
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1 int cabs(int x) {

2 return (x < 0)? -x : x;

3 }

List. 8. Definition of closed-box function cabs.

Property. If a formula Ω is satisfiable on the CB theory (say, on an interpretation I), then, I will
also satisfy the formula Ω𝑢𝑓 , where the CB symbols are interpreted as UF symbols (the theory of
uninterpreted functions):

∀I .I |= Ω ⇒ I |= Ω𝑢𝑓

In other words, all models of Ω are also models of Ω𝑢𝑓 .
For example, consider the constraint Ω = (𝑥 < 0) ∧ (cabs(𝑥) > 0), where cabs is a closed-

box function (defined in List. 8). Let cabs𝑢𝑓 be an uninterpreted function, we define Ω𝑢𝑓 as
Ω𝑢𝑓 = (𝑥 < 0) ∧ (cabs𝑢𝑓 (𝑥) > 0). We can see that:

• One possible satisfiable assignment for Ω is (𝑥 = −1), and it also satisfies Ω𝑢𝑓 , where cabs𝑢𝑓
could be simply 𝜆𝑥 .1;
• However, the implicationmay not work in the other direction. For example, (𝑥 = −1, cabs𝑢𝑓 =

𝜆𝑥 .2) is a valid model for Ω𝑢𝑓 but it does not satisfy Ω.

SMTLIB syntax. We augment the SMTLIB syntax with the declare-cb construct to define closed-
box functions. For example, a closed-box function cfun that takes two 32-bit bitvector arguments
and returns a 32-bit bitvector can be written as:

(declare-cb cfun ((_ BitVec 32) (_ BitVec 32)) (_ BitVec 32))

4 ALGORITHM

We show our algorithm in Alg. 1. Given a formula Ω, the first step involves segregating (line 1) the
terms into two sets, 𝜔𝑠𝑚𝑡 is presented to the SMT engine queue and 𝜔 𝑓 𝑢𝑧𝑧 is added to the queue
of the fuzz engine. Next, the algorithm uses the fuzz engine to "guess" a partial model for the CB
terms (line 3), and, then, it seeks a completion of this model via the SMT engine (line 6). If the
model completion is successful the algorithm returns SAT with a complete model (line 8). If partial
model generated by fuzz engine conflicts with the terms in the SMT engine, model completion
fails (line 11). In this case, the algorithm analyzes the conflict to pull relevant terms (within the CB
theory) into the fuzz engine to refine its search (line 15). We now discuss the algorithm in detail.

4.1 Segregate

The Segregate method is a two-step process:

Purification. Our purification step is similar to the purification algorithm in the Nelson-Oppen
theory combination strategy [Nelson and Oppen 1979]. Given a formula 𝜑 that has terms from both
SMT theories and closed-box function invocations, the purification step decomposes the formula 𝜑
into a set of (conjunction over) simpler terms such that all terms are either purely from the SMT
theories or are simply invocations of some closed-box function. This is achieved by adding new
temporary variables that decompose complex terms into a conjunction of simpler terms, constrained
by equalities.

Separation. In the second step, Segregate propagates only the CB terms to our fuzz engine
while the rest of the terms are added to the queue of the SMT engine. However, all the closed-box
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Algorithm 1: Sādhak solver algorithm.

Input: Ω: formula to be checked
1 𝜔𝑠𝑚𝑡 , 𝜔 𝑓 𝑢𝑧𝑧 ← Segregate(Ω)

2 while True do

3 𝑟1,𝑚1 ← FuzzEngine(𝜔 𝑓 𝑢𝑧𝑧)

4 if 𝑟1 = TIMEOUT then

5 return UNKNOWN

6 𝑟2,𝑚2, 𝜔𝑙𝑒𝑚, 𝜔𝑐 ← SmtEngine(𝜔𝑠𝑚𝑡 ,𝑚1)

7 if 𝑟2 = SAT then

8 return (SAT,𝑚1 ∪𝑚2)

9 else if 𝑟2 = TIMEOUT then

10 return UNKNOWN

11 else

12 if 𝜔𝑐 ∩𝑚1 = ∅ then
13 return UNSAT

14 𝜔𝑠𝑚𝑡 ← 𝜔𝑠𝑚𝑡 ∪ Indpendent(𝜔𝑙𝑒𝑚,𝑚1) ∪ ConvertCBToUF(𝜔𝑠𝑚𝑡 ,𝑚1)

15 𝜔 𝑓 𝑢𝑧𝑧 ← 𝜔 𝑓 𝑢𝑧𝑧 ∪ Filter(𝐶𝐵T , Independent(𝜔𝑐 ,𝑚1))

Algorithm 2: FuzzEngine

Input: 𝜔 : constraint for satisfiability checking
1 𝑃 ← Compile(𝜔)

2 𝑟𝑒𝑠𝑢𝑙𝑡,𝑚 ← Fuzz(𝑃 )

3 if result = TIMEOUT then

4 return TIMEOUT, None

5 else

6 return SAT,𝑚

function invocations are also rewritten as UF (uninterpreted functions) invocations and are added
to the queue of the SMT engine. This ensures that any model generated by the SMT engine satisfies
function congruence over the CB functions. For a closed-box function f, we denote the closed-box
invocation added to the fuzz engine queue as f𝑐𝑏 and that added to the SMT engine queue (as an
UF) as f𝑢𝑓 .

For example, Fig. 3 shows the purification of the formula 𝑥 + 𝑓 𝑜𝑜 (𝑦) > 0 (shown in yellow

box). The green box shows the set of formulas generated after our purification step; an additional

variable t is introduced to separate the constraints. In the separation step, the closed-box function
foo (in the green box) is re-written as an uninterpreted function foo𝑢𝑓 for the SMT engine

constraints queue ( red box) and foo𝑐𝑏 for the fuzz engine constraints queue (shown in the blue
box).

4.2 SMTEngine

SMTEngine could be a standard DPLL(T)[Ganzinger et al. 2004; Nieuwenhuis et al. 2006] based
solver that is capable of solving for satisfiability over a set of theories. The theories are combined
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𝑥 + 𝑓 𝑜𝑜 (𝑦) > 0

(original formula)

𝑥 + 𝑡 > 0

𝑓 𝑜𝑜 (𝑦) = 𝑡

(purified)
𝑥 + 𝑡 > 0

𝑓 𝑜𝑜𝑢𝑓 (𝑦) = 𝑡

(SMT engine constraints)

𝑓 𝑜𝑜𝑐𝑏 (𝑦) = 𝑡

(Fuzz engine constraint)

Fig. 3. Example showing segregation.

using a theory combination algorithm like Nelson-Oppen [Nelson and Oppen 1979]. The SMT
engine accepts the set of constraints 𝜔 and a set of assumptions (𝜑). SMTEngine(𝜔,𝜑) computes
the following:

• a result 𝑟 , that could be SAT, UNSAT, UNKNOWN;
• if the result is SAT, it returns a model𝑚 as a set of assignments to the variables appearing in
the formula that satisfies 𝜔 and 𝜑 ;
• a set of lemmas, 𝜔𝑙𝑒𝑚 , that are additional terms it learns while running DPLL(T) and the
theory combination algorithms; these lemmas are learnt by theory solvers during theory
reasoning;
• if the result isUNSAT, it returns a set of conflict terms (sometimes referred to as an unsatisfiable
core) 𝜔𝑐 ; intuitively, 𝜔𝑐 captures the reason of unsatisfiability of 𝜔 ∪ 𝜑 ;

4.3 FuzzEngine

FuzzEngine implements the core decision procedure for the closed-box theory. FuzzEngine
attempts to solve the set of constraints presented to its constraint queue to compute a model such
that the constraints are satisfied modulo the execution semantics of the participating closed-box
functions. FuzzEngine (see Alg. 2) has two main steps, viz. Compile, and Fuzz.

4.3.1 Compile. This procedure uses our constraint compiler to compile the presented set of con-
straints into an executable program that invokes calls to the closed-box functions. Sect. 5.3 provides
the compilation schematic: the participating variables in the set of constraints are declared and
read as inputs. Then it compiles an if-ladder where each contraint is translated to its respective
executable semantics as per the provided translation rules RT (see Sect. 3) and instantiated in the
conditional guards. Note that every assignment of the input variables that reaches the assertion
(crashing input) will be a satisfiable assignment for the respective set of constraints. Further, as the
executable calls to the closed-box functions are available, this program can be linked and executed
through these closed-box functions. In summary, our constraint compiler reduces the problem
of satisfiability over a set of constraints to the problem of reachability in an executable program
containing closed-box functions.

4.3.2 Fuzz. We, then, use an off-the-shelf fuzzer to fuzz the program generated by the constraint
compiler in a search for crashing inputs (and hence, a satisfiable model for the presented set of
constraints). If such inputs are found, it returns these inputs as the model with a SAT verdict.
However, if the fuzzer runs out of the budgeted time, FuzzEngine returns Timeout.

4.4 Conflict-Driven Fuzz Loop (CDFL)

Our core algorithm (Alg. 1) makes use of some auxiliary functions:
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• ConvertCBToUF(𝜔,𝑚). Given a set of constraints𝜔 and a model𝑚, ConvertCBToUF learns
new UF theory facts from the model from UF term in 𝜔 and the corresponding assignments
in𝑚. For example, let 𝜔 contain two UF theory terms 𝑤 = 𝑔(𝑢, 𝑣) and 𝑧 = 𝑓 (𝑥,𝑦) and the
model contains assignment (𝑢 = 1, 𝑣 = 2,𝑤 = 5, 𝑥 = 0, 𝑦 = 3, 𝑧 = 7). ConvertCBToUF(𝜔,𝑚)
will return new facts 𝑔(1, 2) = 5, 𝑓 (0, 3) = 7.
• Independent(𝜔,𝑚). Given a set of constraints 𝜔 and a model𝑚, Independent(𝜔,𝑚) extracts
constraints from 𝜔 that hold irrespective of the model𝑚 (i.e. those that are independent of
𝑚). We explain the implementation of Independent in Sect. 5.4.
• Filter(T , 𝜔). The function Filter is used to extract out terms corresponding to
a certain theory (𝐶𝐵T in this case) from the set of constraints 𝜔 . For example,
let 𝜔 be {(bvugt x y), u + v > 0, g(w) = 1, (bvuge z 0)} then Filter(T𝐵𝑉 , 𝜔) will return
{(bvugt x y), (bvuge z 0)}.

We are now in a position to explain our core algorithm (see Alg. 1). After the initial segregation
step (line 1) that populates the constraints for the queues of the SMT (𝜔𝑆𝑀𝑇 ) and fuzz (𝜔 𝑓 𝑢𝑧𝑧)
engines, we enter into the conflict-driven fuzz loop (CDFL) in a search for a satisfiable assignment
to the set of constraints modulo closed-box functions (line 2 to line 15). We start off (line 3) by
using FuzzEngine on 𝜔 𝑓 𝑢𝑧𝑧 to compute a partial model𝑚1 for 𝜔 𝑓 𝑢𝑧𝑧 ⊆ Ω. If our solver runs out of
its budgeted time (line 5), we exit with an UNKNOWN verdict.

Otherwise, we invoke SMTEngine (line 6) in seach of a completion for the partial model𝑚1 on
the set constraints 𝜔𝑆𝑀𝑇 (by invoking SMTEngine with constraints 𝜔𝑆𝑀𝑇 and assumptions𝑚1). If
such a model is found, we return the completed model𝑚1 ∪𝑚2 with the SAT verdict (line 8). On
the other hand, if the SMT engine runs out of the budgeted time, we exit with an UNKNOWN

verdict (line 10).
However, if the SMT engine detects a conflict, we attempt to analyze the reason of the conflict. If

the set of conflict terms do not include the assignments from the partial model (line 13), it indicates
that the constraints are unsatisfiable irrespective of the closed-box functions. In this case, we return
the verdict as UNSAT. For example, in Tab. 1, the unsat core 𝜔𝑐 is {(𝑥 > 𝑦), 𝑥 = 0, 𝑦 = 0} which
includes the model assignments {𝑥 = 0, 𝑦 = 0}; hence, in this case we cannot return with UNSAT
and must move to line 14.
Otherwise (i.e. when the assignments in the model are involved in the conflict), we learn from

this failure by augmenting the set of constraints, both for the SMT and the fuzz engines:

• SMT Engine. In this case, we add all the new lemmas that were discovered during the
last invocation of the SMT engine that do not depend on the assumptions. The function
Independent extracts all the set of constraints from 𝜔𝑙𝑒𝑚 that hold irrespective of𝑚1. Also,
the outputs of the closed-box functions discovered during the fuzzer runs, that are captured
in the model𝑚1 are also extracted and added to𝜔𝑆𝑀𝑇 as UF terms. This refines the definitions
of these functions within the SMT engine (line 14).
• Fuzz Engine. All the terms in the conflicting terms 𝜔𝑐 that belong to the CB theory are
relevant for the CB terms (as they caused conflicts). Hence, we add such constraints to 𝜔 𝑓 𝑢𝑧𝑧

(line 15). In this case the function Filter extracts out all the terms corresponding to the
𝐶𝐵T from the set of constraints in 𝜔𝑐 . We again use the function Independent to extract
constraints from 𝜔𝑐 that hold irrespective of the model𝑚1.

Theorem. Alg. 1 is sound, i.e. it returns a model𝑚 only if it satisfies the set of constraints Ω with
respect to the executable semantics of the participating closed-box functions.
We omit the detailed proof for brevity. However, the primary observation used in the proof is

that a model (𝑚1 ∪𝑚2) is returned only when:
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1 input(x,y,z,w);

2 if(x == y)

3 if(y == z)

4 if (w > z)

5 assert(0);

➡
1 input(x,w);

2 if (w > x)

3 assert(0);

Fig. 4. Handling equality constraints in target program.

(1) 𝑚1 is discovered by the FuzzEngine at line 3 (so𝑚1 satisfies the executable semantics of the
closed box functions), and

(2) 𝑚1 is consistent with the completion𝑚2 from the SMT engine at line 6 - line 8 (and hence,
𝑚1 ∪𝑚2 also satisfy the rest of the constraints in Ω).

Also, our algorithm ensures progress as at least one of 𝜔𝑠𝑚𝑡 or 𝜔 𝑓 𝑢𝑧𝑧 is definitely augmented
in every iteration of the loop. Due to the use of fuzzing, Sādhak does not guarantee termination;
users can run Sādhak with a timeout to ensure that their runs terminate.

5 IMPLEMENTATION

We build Sādhak within the popular CVC4 [Barrett et al. 2011] SMT solver. Sādhak reuses many
of its components (e. g., SMTLIB parser, purification engine etc.) to provide support for CB-theories.
We use AFL++ [Fioraldi et al. 2020] for fuzzing C files generated from CB constraints. The

generated C file is compiled with the compiler wrapper afl-clang-lto along with AFL_LLVM_CMPLOG,

AFL_LLVM_LAF_SPLIT_COMPARES, AFL_LLVM_LAF_TRANSFORM_COMPARES to optimize fuzzing of
the target C file. These flags help us in tackling hard constraints like those involving magic-byte
and equality comparisons. Sādhak runs AFL++ in the persistent mode.

5.1 Equivalence Class Optimizations

The performance of a fuzzer depends on the type and complexity of constraints presented to it. Let
us discuss two classes of constraints that fuzzers generally find hard to solve and the optimizations
used within Sādhak to handle them.

5.1.1 Equality Constraints. It is well-known that equality constraints are challenging for fuzzers.
However, many equality constraints can be handled by identifying equivalence classes and applying
a transformation that assigns all members of an equivalence class to a class representative. This
technique is inspired by a similar mechanism used in the UF decision procedures in SMT solvers.
For example, let {𝑥 = 𝑦,𝑦 = 𝑧,𝑤 = 𝑧} be a set of constraint at the fuzz engine’s queue. One can

identify two equivalence classes {𝑥,𝑦, 𝑧} and {𝑤} based on the equality constraints. This allows a
simple transformation as shown in Fig. 4 that chooses a representative from each class and replaces
all uses of members of the class with the class representatives.

5.1.2 Magic-Byte Comparisons. Magic byte comparison are known to be even harder for the fuzzer
to get through. A similar technique of identifying equivalence classes work well in such scenarios
as well. This transformation is illustrated in Fig. 5.

5.1.3 Further Optimizations Possible. Similar to equivalence class optimizations for variables and
magic-bytes, we could also consider forming equivalence classes for terms along with variables
and magic-bytes. This can be a powerful optimization that can significantly simplify equality
comparisons with terms. Sādhak currently misses this optimization and we plan to include it
sometime soon in the future.
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1 input(x,y);

2 if (x == 5)

3 if (x < y)

4 assert(0);

➡
1 input(y);

2 if (5 < y)

3 assert(0);

Fig. 5. Avoiding magic byte comparison in program to fuzz.

5.2 Fuzzer Seed Optimizations

As the terms in the fuzz engine only get augmented by additional constraints (i.e. constraints are
never removed, see Sect. 4), the fuzzer can attempt to learn from its previous runs (on the same
SMT file). We collect some inputs from the previous runs of the fuzzers that we add as seeds for
subsequent runs. As the fuzzer uses these seeds to initiate exploration in a run, a good set of seed
inputs can significantly bolster the performance of our fuzz engine.
There are two potential sources for such seed inputs:

• Crash Inputs. These are inputs that are encountered when the fuzzer is able to discover
a failure in the program under inspection; in Sādhak, these correspond to the inputs that
yield a satisfiable assignment to constraints presented to the fuzzer queue.
• Interesting Inputs. These are inputs that the fuzzer records whenever it discovers new
coverage.

Our preliminary experiments demonstrated that all of the above were useful seed inputs for
subsequent fuzzer invocations (on the same SMTLIB query). Hence, we seed our fuzzer runs with
both crash and interesting inputs from previous runs. In our current implementation, we keep the
seeds collected from previous iterations. Our hypothesis is that there is some correlation between
the seeds across iterations that can help the fuzzer in subsequent rounds to quickly find a partial
model (even though there may be change in the equivalence classes). We intend to investigate on
this and better seed selection strategies in the future.

5.3 The Constraint Compiler

Our constraint compiler (see Sect. 4.3.1) generates C files to fuzz for satisfiable assignments. The
generated C files (roughly) have a structure as shown in List. 10. The respective sections are
instantiated by the translator while generating the C program using a user-provided translation
schema R (see Sect. 3).

Translation Schema. We assume the translation schema to provide definitions to two interface
functions:

• TRANSLATE_SORT: It provides a schema for translating sorts from the set of constraint to
appropriate C language datatypes;
• TRANSLATE_CONSTRAINT: It provides a schema for translating terms from the set of con-
straints to appropriate C language expressions. The translation schema (RT ) is used to drive
this translation for function symbols (FT ), predicates (BT ) and constants (𝐶T ) for each
participating theory T in these constraints;

For example, below are some example translations for BitVector (BV) theory terms to expressions
in the C programming language2 below,

2to keep the exposition simple, we assume that the width of the BV variables is 8/32/64 bits for which standard datatypes in

C are available; otherwise, additional łmasking" operations may be required
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1 (declare-const x (_ BitVec 32))

2 (declare-const y (_ BitVec 32))

3 (declare-const z (_ BitVec 32))

4

5

6 (declare-cb f

7 ((_ BitVec 32) (_ BitVec 32))

8 (_ BitVec 32))

9

10 (= z (f x y))

11 (bvugt x y)

12 (bvugt z (_ bv255 32))

13 (bvult z (_ bv65536 32))

(a) Constraints in bit-vector theory

1 uint32_t f (uint32_t, uint32_t);

2

3 int main() {

4 uint32_t x,y,z;

5

6 READ_INPUT(x,y,z);

7

8 if (z == f(x, y))

9 if (x > y)

10 if (z > 255)

11 if (z < 65536)

12 {

13 assert(0);

14 }

15

16 return 0;

17 }

(b) C program translation of List. 9a

List. 9. Constraint compilation for bit-vector terms.

- TRANSLATE_SORT((declare-const x (_ BitVector 32))): translates to a variable declaration
uint32_t x is C program;

- TRANSLATE_CONSTRAINT((bvugt x y)): predicate bvugt in BV theory is mapped to > symbol
in the target language C and the expression is translated to (x > y);

- TRANSLATE_CONSTRAINT((bvadd x y)): bvadd function symbol is mapped with + symbol and
the expressions gets translated to (x + y);

- TRANSLATE_CONSTRAINT((= x (_ bv0 32))): constraint with constant term (_ bv0 32) gets
translated to (x == 0);

- TRANSLATE_CONSTRAINT((= (foo x y) z)): translates to (foo(x, y) == z), where foo is a
closed-box function.

Modus Operandi. When a set of constraints are presented to the queue of the fuzz engine, our
constraint compiler operates as follows: to begin with, the variables and their sorts are extracted
from the presented constraint set. Then, the equivalence classes (see Sect. 5.1) are computed and
representative variables selected. The TRANSLATE_SORT interface function is used to instantiate
the respective section in the template by declaring all the representative variables from each
equivalence class. The DECLARE_CB_FUNCTIONS hole is filled with forward declarations of all closed-
box functions symbols in F 𝑐𝑏

T .
Then, the constraints are rewritten in accordance to the representative variables, and the respec-

tive C program code is materialized via the TRANSLATE_CONSTRAINT interface function.
List. 9 shows an example of how the constraint compiler compiles a set of constraints to a C

program. The colors in the figure map elements from the set of constraints (List. 9a) to the respective
C program element (List. 9b). These constraints correspond to our motivating example, Eq. (1), at
its fourth iteration (Tab. 4).
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1 DECLARE_CB_FUNCTIONS

2

3 int main() {

4

5 TRANSLATE_SORTS(V1, V2, V3, ...)

6

7 READ_INPUTS(V1, V2, V3, ...)

8

9 if ( TRANSLATE_CONSTRAINT(C1) )

10 if ( TRANSLATE_CONSTRAINT(C2) )

11 if ( TRANSLATE_CONSTRAINT(C3) )

12

...

13 {

14 assert(0);

15 }

16

17 return 0;

18 }

List. 10. Template file to be used by C translator.

5.4 Miscellaneous Details

Though Sect. 4 attempts to discover unsatisfiability within the pure SMT terms within the conflict-
driven fuzz-only loop, we found that unsatisfiable benchmarks can be solved quickly by invoking
the SMT engine on 𝜔𝑆𝑀𝑇 before entering the loop. Our implementation uses this setting by default.
The benchmark suite used in evaluation does not include such instances that are unsatisfiable on
pure SMT terms (i.e. 𝜔𝑆𝑀𝑇 is not unsatisfiable for any of our benchmarks) and so, Sādhak enters
fuzz loop at least once.

Further, our preliminary experiments demonstrated that adding the closed-box function assign-
ments from𝑚1 to 𝜔𝑆𝑀𝑇 via the ConvertCBToUF function (Alg. 1. line 15) has little impact but
complicates the implementation. Hence, we turned this setting off in our implementation.
We implement the Independent function (in Alg. 1 via incremental SMT solving. We store

all lemmas available in the context of the SMT engine before asserting partial model from the
fuzz engine. After asserting the partial model, the new lemmas inferred could now be depen-
dent on the partial model. We only use the lemmas available in the stored context as the (safe
underapproximation of) independent lemmas.

6 EVALUATION

Benchmarks. We evaluate Sādhak on a set of 107 benchmarks in the SMTLIB format. All these
benchmarks include CB terms and hence, cannot be handled by SMT solvers. We used the following
four sources for creating our benchmarks suite:

• We ran the symbolic execution engine KLEE [Cadar et al. 2008] on programs from [esb 2021],
that contained external function calls to cstdlib functions. We collected the path constraints
from KLEE from these executions. We link against the respective C libraries for definitions
of these functions to be used as closed-box functions.
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• We identified certain functions in SMTCOMP [smt 2015] benchmarks and removed their
function definitions. We redefined them in C to serve as closed-box functions instead;
• We adapted some SyGuS-Comp benchmarks [syg 2019] as SMTLIB files with CB functions. A
SyGuS-Comp benchmark consists of a set of constraints in the SMTLIB format and a grammar
definition. We extracted the SMTLIB constraints from these files. We defined the function
synthesized from the benchmark in C to be used as a closed-box function.
• Benchmarks from Delphi [Polgreen et al. 2022] have also been used for evaluating Sādhak.

All our benchmarks are available in the supplementary material. We intend to contribute them
to SMTLIB [Barrett et al. 2010] in the future.

We ran all experiments on an Intel(R) Xeon(R) 2.00GHz E5-2620 CPU with 32GB RAM, running
Ubuntu 16.04. We use a timeout of 600 seconds for all tools (Sādhak and the baseline tools) across
all our experiments. We report the median of eleven runs.

Research Questions. We attempt to answer the following research questions:

• How do the the different modes of Sādhak compare?
• How does Sādhak compare with the current state-of-the-art tools?
• Are the optimizations in Sādhak effective?

We found that the CDFLmode of Sādhak that uses the conflict-driven fuzz loop (CDFL) algorithm
to be the best mode of Sādhak; it solves 26.17% more benchmarks than the fuzz-only mode. We
compare Sādhak with Delphi, the only other tool that is capable of handling CB constraints;
Sādhak solves 36.45% more benchmarks than Delphi and has a PAR2 score that is 5.72× better. We
found that the optimizations in Sādhak are effective, allowing us to solve 28% more instances and
improving the PAR2 score by 4.71×.

6.1 Sādhak: Fuzz-Only v/s CDFL Modes

We implement two modes in Sādhak:

• an CDFL mode that uses conflict-driven fuzz loop (CDFL) to compute models (see Sect. 4),
and
• a fuzz-only mode that does not employ the SMT engine; all the constraints are translated
to a C program and the fuzzer is used to search for a satisfiable assignment (as discussed in
Sect. 2.2).

Fig. 6 shows the performance of the two modes on all of our 107 benchmarks on a cactus plot. A
point (𝑥 ,𝑦) on the plot signifies that solving 𝑥 benchmarks took less than 𝑦 seconds of time. The

green colored plot in Fig. 6 shows the cactus plot of the CDFL mode and the red colored plot

shows the cactus plot for the fuzz-only mode.
It can be seen in the plot, the CDFL mode significantly outperforms the fuzz-only mode. While

the CDFL mode solves 101 of our 107 benchmarks, the fuzz-only mode solves only 73 instances. On
the instances that get solved in both modes, on an average, CDFL is 20.5× faster.
From the evaluation we observed that, the fuzz-only mode struggles to solve benchmarks that

have complex SMT constraints along with the CB functions. For example in Eq. (1), the constraints
require a factorization of 64 into p, q, r (each being a power of two) ś a fuzzer will find it difficult to
solve. However, on a few instances, the fuzz-only mode performs better than CDFL. These instances
had relatively small and simple SMT constraints that the fuzzer could handle well; the performance
of the fuzz-only mode deteriorate as the number and complexity of the SMT constraints increase.
Furthermore, the fuzz-only mode is limited as it can only be used when translation rules are
available for all possible terms of the participating theories (see Sect. 3).
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Fig. 6. Sādhak compared to Delphi

Table 7. Sādhak and Delphi performance summary. # solved represents the number of solved instances and

PAR-2 represents the score we compute to compare two solvers. The best values are shown in bold fonts.

Sādhak Delphi

Fuzz mode CDFL mode SMT mode BitBlast mode

# solved 73 101 34 62

PAR-2 484.70 104 924.36 595.51

The fuzz-only mode of Sādhak is inspired by a set of recent proposals [Borzacchiello et al. 2021;
Liew et al. 2019; Pandey et al. 2019] that created such a solver to fuzz certain kinds of constraints
like path conditions from symbolic execution engines, floating-point constraints and symbolic
expressions. The fuzz-only mode of Sādhak now provides a mechanism to handle any arbitrary
SMTLIB query.

For the rest of the evaluation, Sādhak refers to the CDFL mode and Sādhak(fuzz-only) refers to the

fuzz-only mode.

6.2 Sādhak Versus State-of-the-Art Tools

Delphi [Polgreen et al. 2022] is the only other tool that can handle CB constraints, and hence we use
it as our baseline (Delphi refers to CB operations as oracle functions). Delphi provides two modes:
an SMT mode (that uses an SMT solver) and a bit-blasting mode (that bit-blasts the constraints to
propositional logic and uses a SAT solver).

Fig. 6 shows a cactus plot of both the modes of Delphi. The blue colored plot shows the cactus

plot for Delphi in bit-blast mode and brown plot shows the cactus plot for Delphi in SMT mode.
As can be seen from the plot, the bit-blasting mode is comparatively faster than the SMT mode.

Sādhak, however, significantly outperforms all modes of Delphi on each of its supported modes.
Even the fuzz-only mode of Sādhak is faster than both the modes in Delphi.
Table 7 presents a summary of the performance of both Sādhak and Delphi, across all their

modes. We summarize performance via PAR-2 scores [Balyo et al. 2017], which is a common metric
used for comparing SAT/SMT solvers. PAR-2 score is defined by adding running time of solved
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Fig. 7. Sādhak with equivalence class optimization from Sect. 5.1 and seed optimization from Sect. 5.2

instances and twice the timeout for each unsolved instances, then deviding the number with total
number of benchmarks.

Overall, Sādhak solves 36.45% more benchmarks than the best performing mode of Delphi and
has a 5.72× higher PAR-2 score. On benchmarks that were solved by both the tools (Sādhak and
bit-blast mode of Delphi), on an average, Sādhak is 14.62× faster.
This experiment shows the value of combining an SMT solver and fuzzer in a CDFL scheme

instead of using CB operations simply as an oracles.

6.3 Impact of Optimizations

6.3.1 Equivalence Class Optimizations. The performance of Sādhak improves significantly, Sādhak
solving 29 (27.1%) more instances when the equivalence class optimizations are enabled. On the
common set of benchmarks that are solved even with these optimizations disabled, on an average,
Sādhak gets a average speedup of 26.34× when the optimization is turned on.

6.3.2 Sādhak with Fuzzer Seed Optimization. Both the set of crashing inputs and the set of in-
teresting inputs from previous runs of the fuzzer can serve as viable seed input candidates for
subsequent runs; we use both of these to seed the fuzzer.

6.3.3 Summary. Fig. 7 summarizes the improvements in the performance of Sādhak due to the

different optimizations: The blue cactus plot shows the performance of Sādhak without any
of the optimizations (equivalence class or seed optimizations); we denote it by Sādhak(no-opt).

The red plot is the case where only the equivalence class optimizations are tuned on, denoted as
Sādhak(eqv-opt). Finally, the green colored plot shows the performance of Sādhak with all the

optimizations turned on (denoted as Sādhak).

7 RELATED WORK

Reasoning on programs that contain closed-box functions has been a challenging problem. As
regular SMT solvers are incapable of handling such closed-box functions, many of the program
analysis techniques like bounded model checkers and symbolic execution engines, attempted to
invent their own strategies to combat this problem.
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In the context of bounded model checking, angelic verification [Das et al. 2015; Das and Lal 2017;
Joshi et al. 2012; Lahiri et al. 2020] emerged as an interesting proposal. In bounded model checking,
the sound strategy is to overapproximate all closed-box functions; however, this is not practical as
it explodes the number of false positives. Angelic verification uses a set of (mostly domain-specific)
underapproximation heuristics to reduce the number of false positives. However, in the process the
tool now loses soundness guarantees as the heuristics may suppress real bugs. Nevertheless, this
technique has been demonstrated as effective in practice.

Symbolic execution [Cadar et al. 2008; Godefroid et al. 2005] uses concretization to handle closed-
box artifacts: whenever a closed-box function is encountered, the symbolic arguments passed to
the closed-box function are solved (in the context of the path condition) using an SMT solver
for possible concrete arguments that are potential arguments of the invocation. The closed-box
function is, then, concretely executed with these arguments and symbolic execution proceeds with
the value returned from the invocation. Pandey et al. [2019] showed that a symbolic execution
suffers significant loss in coverage, incurs path divergence and can even generate false positives.
To combat this challenge, the authors proposed Colussus, a symbolic execution engine that used a
fuzz solverÐa fuzzer that attempted to solve path conditions, including the closed-box functions, in
an attempt to discover concrete values that could cover the paths lost due to concretization; on path
conditions that do not contain closed-box functions, an SMT solver is employed. Their fuzz solver
is limited as it only handled constraints in the form of path conditions from symbolic execution
engines, and solely uses fuzzing as the strategy to solve the constraints. FuzzySAT uses a similar
scheme that proposes to completely abandon SMT solvers in lieu of a fuzzing driven solver to solve
path conditions arriving out of symbolic execution. FuzzySat applies multiple optimizations to
ensure that such constraints (from symbolic execution engines) can be effectively solved by fuzzers.
In contrast to our proposal of building a general-purpose SMT solver, these techniques aimed to
built specialized solvers for solving only path conditions and symbolic expressions from symbolic
execution. Further, as these techniques completely eliminate SMT solvers and use only a fuzz-only
approach with closed-box functions, they struggle when complex SMT constraints are encountered
(at which SMT solvers are more adept).

Achar [Lahiri and Roy 2022] uses the fuzz-only approach for inferring inductive loop invariants
for almost verification over closed-box components (referred to as opaque components in their
work). Achar adopts a teacher-learner model where the teacher uses proof fuzzing to invalidate
candidate invariants proposed by the learner. Any counterexamples are fed back to the learner for
refining its proposals. Achar also allows for a hybrid scheme, where the set of paths in the program
are partitioned; while a fuzzer is used for łalmost" verification on paths that contain closed-box
functions, an SMT-based formal verification is applied to the rest of the program.
Higher-order test generation [Godefroid 2011] models closed-box functions as uninterpreted

functions and uses tests from the validity proofs of first-order logic formulas from the path condi-
tions (rather than from satisfiability assignments). They pose their work more as a requirement
specification for such saturation based solvers in the absence of efficient validity proof generators.
Mechtaev et al. [2018] modelled closed-box functions within path conditions of symbolic execution
runs as an existential second-order constraints. They, then, solve these second order constraints
via syntax-guided synthesis [Alur et al. 2013]. However, resorting to an expensive program synthe-
sis engine during symbolic execution raises questions on its scalability. Also, like any synthesis
task, their engine must be supplied well-crafted grammars with primitives that well-captures the
semantics of the closed-box functions. Most importantly, the synthesized specification is still an
approximation. Instead of learning a program, Argyros et al. [2016] attempt to learn a symbolic
automata for filters and string sanitizers by treating them as closed-box oracles.
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There has also been interest in building more general purpose solvers, ableit to handle constraints
of a certain kind. There have been some earlier proposals that attempt to handle non-linear
constraints and/or closed-box functions via randomized search [Dinges and Agha 2014; Păsăreanu
et al. 2011]; however, recently, fuzzers have emerged the de facto choice for randomized search
through the program state space. [Liew et al. 2019] attempts to solve floating-point SMT constraints
using fuzzing. They package multiple optimizations (e. g., the equivalence class optimization that is
commonly used for UF theories, and that is also employed by Sādhak). They, too, use a fuzz-only
approach and solely focus on the floating-point theory.
Delphi [Polgreen et al. 2022] is a state-of-the-art SMT solver that is capable of handling closed-

box functions. Delphi uses the SMT driven active learning scheme (see Sect. 2) and solely uses an
SMT solverÐthat is, no randomized search or fuzzing is employed for the closed-box constraints.
Instead, the SMT solver attempts to verify solutions over the rest of the constraints with the
closed-box functions; if a solution is consistent with the closed-box constraints, the solution is
returned. Otherwise, the SMT solver learns from the failure and attempts to find another solution.
In contrast to all the above proposals, Sādhak is, to the best of our knowledge, the first solver

that successfully combines an SMT solver and a fuzzer in a synergistic loop. Operating in a
counterexample-driven fuzz loop (CDFL), Sādhak uses a fuzzer to search over the closed-box
constraints, while an SMT solver reasons on the SMT theories. These two engines exchange a
rich set of interface constraints, learning from each other’s failures. Our experimental results
demonstrates the strength our CDFL scheme.

With Sādhak to answer to satisfiability queries, program synthesis with closed-box components
becomes an interesting research direction. Program synthesis has seen applications in multiple
domains, like bitvectors [Gulwani et al. 2011; Solar-Lezama et al. 2005], heap manipulations [Garg
and Roy 2015; Polikarpova and Sergey 2019; Roy 2013; Verma and Roy 2017; Verma and Subhajit Roy
2021], bug synthesis [Roy et al. 2018], differential privacy [Roy et al. 2021; Wang et al. 2021], Skolem
functions [Golia et al. 2020, 2021a,b], synthesis of fences and atomic blocks [Verma et al. 2020],
synthesizing parsers [Kalita et al. 2022; Leung et al. 2015; Singal et al. 2018] and even in hardware
security [Takhar et al. 2022]. The above works assume that all program components available
in synthesis have formally-defined semantics. Delphi [Polgreen et al. 2022] proposes a synthesis
modulo oracle framework that allows synthesis over closed-box components. With satisfiability
solvers and specialized algorithms to drive it, synthesis over closed-box components is a potentially
fruitful direction for synthesis research.

Fuzzing has been used effectively in many general-purpose applications such as discovering per-
formance bottlenecks [Lemieux et al. 2018], side-channel analysis [Nilizadeh et al. 2019], hardware
testing [Laeufer et al. 2018; Muduli et al. 2020], etc., other than finding software vulnerabilities.
The success of Sādhak is largely due to the recent improvements in fuzzing too. Sādhak uses
AFL++ [Fioraldi et al. 2020], an improved variant of AFL [Zalewski 2019], to implement its fuzz
engine. As we use this component off-the-self, any other popular fuzzer, like libFuzzer [Serebryany
2015] or Honggfuzz [Google Inc. 2020], can also be employed instead. At the same time, as all
programs from our constraint compiler uses a well-defined structure, we believe that Sādhak can
be significantly improved via a domain-specific fuzzer. Frameworks like FuzzFactory [Padhye
et al. 2019] facilitate writing fuzzers with custom objective functions, we intend to pursue this
direction to build a custom fuzzer for Sādhak in the future.

8 CONCLUSION

We tackle the problem of solving SMT queries with closed-box functions (also called oracle func-
tions [Polgreen et al. 2022] or opaque components [Lahiri and Roy 2022]). Our algorithm, conflict-
driven fuzz learning, places a fuzz engine and an SMT engine in a loopÐeach learning from each
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other’s failures. We also create a benchmark suite of such SMT queries and evaluate an instantiation
of our idea, Sādhak, on it. Sādhak solves 36.45% more benchmarks and achieves a PAR2 score
that is 5.72× better than the current state of the art. Sādhak shows an average speed up of 14.62×
compared to state-of-the-art solver (Delphi [Polgreen et al. 2022]) in its best mode, on benchmarks
solved by both the tools.
Though we collected benchmarks from a variety of sources, there are some threats to validity.

Experiments on benchmarks from more sources can be conducted. Further, like any other compu-
tational tasks, the experimental results are subject to variations with change of architecture and
memory of the computing platforms. However, we believe that the trends in the results should
continue to hold.

9 DATA-AVAILABILITY STATEMENT

A Docker image containing source code of Sādhak, our benchmark suite, and experimental scripts
is available [Muduli and Roy 2022].
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