
Mining Hyperproperties from Behavioral Traces
Mayank Rawat Sujit Kumar Muduli Pramod Subramanyan∗

Indian Institute of Technology, Kanpur
{mayankr, smuduli, spramod}@cse.iitk.ac.in

This paper is dedicated to the loving memory of Pramod Subramanyan∗ (1984 - 2020),
our academic advisor who guided and motivated us for this work.

Abstract—Many important specifications of hardware and
software systems, such as secure information flow and deter-
minism are expressible only as hyperproperties. In contrast to
the well-studied class of trace properties, which specify sets of
valid runs (aka traces) of a system, hyperproperties can specify
relations that must hold between the traces of a system. While
hyperproperties have many applications, primarily in security
verification, coming up with hyperproperties for SoC validation
is challenging. In this paper, we work toward addressing this
challenge by introducing a framework for mining hyperproper-
ties from execution traces of SoC designs. We introduce novel
algorithms based on coverage-guided fuzzing that enable the
generation of good input traces for the hyperproperty miner.
We also present novel optimistic and pessimistic semantics for
Hyper Linear Temporal Logic (HyperLTL) that enable principled
evaluation of HyperLTL formulas over finite traces. Finally, we
propose algorithms for scalably evaluating non-trivial satisfaction
of candidate hyperproperties on sets of traces. Experiments on
a small but realistic SoC design show the framework is effective
in identifying useful hyperproperties.

I. INTRODUCTION

An important methodology for the verification and vali-
dation of modern systems-on-chip (SoC) platforms has been
assertion-based verification (ABV). ABV enables SoC design-
ers to declaratively specify properties that the design must
satisfy. These properties can be verified/validated using formal
techniques such as bounded and unbounded model checking,
semi-formal techniques such as concolic execution as well as
simulation-based validation. Commonly used property specifi-
cation languages include SystemVerilog Assertions (SVA) [4]
and the Property Specification Language (PSL) [12]. These
specification languages are based on the underlying formalism
of linear temporal logic (LTL) [19].1 Unfortunately, several
important classes of requirements, including information flow
properties like confidentiality and integrity cannot be specified
in formalisms based on LTL/CTL [18]. This exacerbates the
critical challenge of SoC security verification.

Recent efforts, both academic [6, 11, 24] and commer-
cial [1, 23], are tackling the security verification problem
by introducing novel specification languages that can ex-
press information flow assertions, based on the theory of
hyperproperties [7]. However, two important bottlenecks in
using these specification languages are: (i) coming up with a
meaningful set of security-related assertions, and (ii) keeping
this set of assertions updated as the design evolves. In the

1PSL includes an optional extension based on computation tree logic [5].

context of traditional assertions in LTL-based formalisms like
SVA/PSL, analogous problems are mitigated via assertion
mining: techniques for algorithmically identifying likely asser-
tions satisfied by the design by the examination of behavioral
simulation traces [8–10, 13–15, 17, 25, 26, 29]. However,
existing methods cannot mine hyperproperties and extending
them to hyperproperties poses unique challenges (discussed
later in this section). In this paper, we address this gap
in the literature by proposing novel techniques for mining
hyperproperties from behavioral traces of SoC designs.

A. Hyperproperties and their Applications

LTL-based formalisms can only specify trace properties [2].
Roughly speaking, a trace property is a set of good traces and
a system satisfies this trace property if the set of traces of the
system is a subset of this set of good traces.

1) Beyond trace properties: Consider the property of deter-
minism. Determinism requires that the output of a module be
a deterministic function of only its input(s). Assume we have
a hardware module whose input is the 32-bit signal x and the
output is a 16-bit signal y that is produced one cycle after the
input is given. We would like to show that y is a function of
only x. If we are given a trace where the input is x = 1 and
the output is y = 2, can we determine whether the module
behaved deterministically or not in this trace? We cannot! A
counterexample to determinism requires two executions or two
traces with the same inputs and different outputs. So, if we
had two traces, both with the same input x = 1 but the outputs
being y = 2 in one trace and y = 3 in the other, this pair of
traces would be a counterexample to determinism.

The above property can be expressed in the logic Hy-
perLTL, introduced by Clarkson et al. [6] as follows:
∀π1.∀π2.G

(
(xπ1

= xπ2
)→ X (yπ1

= yπ2
)
)
. We will provide

a more detailed introduction to HyperLTL in § III-B; we
informally describe its meaning here. This property is satisfied
by a system if for every pair of traces of the system, named
here π1 and π2, if the value of x in those traces is equal at
some cycle i, then the value of the variable y is also equal at
cycle i + 1. This property is a relation over traces and not a
set of traces. It is an example of a hyperproperty [7].

2) Information Flow Hyperproperties: A particularly im-
portant class of hyperproperties are secure information flow
properties which state that information must not flow from
a specified source to a specified destination [1, 11, 23, 24].

978-1-7281-5409-1/20/$31.00 © 2020 IEEE

Information flow properties can capture both confidentiality
(e.g. secret key must flow to output) and integrity (e.g.
firmware input must not influence register).

src

src

π0

π1

dst

dst

. . .

. . .

6=?=in =in =in=in

Fig. 1: Information flow property.

To check whether information can flow from a source
component to a destination component, it is sufficient to check
the following. Consider two almost-identical executions (i.e.
traces) of system state where all registers except those of the
source component have the same values in the initial state.
The two source components have arbitrarily different initial
values. Now suppose we ask a model checker whether these
two different initial states can result in different values of the
registers in the destination component when given the same
input in both traces. If the answer is in the affirmative, that
means information can flow from the source to the destination
component. If the answer is negative, that means that values at
the source are effectively indistinguishable at the destination,
so no information flow exists. This is also a hyperproperty that
corresponds to a symmetric binary relation over traces. It can
be expressed in HyperLTL as ∀π1. ∀π2. (σπ1 = σπ2∧G (ιπ1 =
ιπ2

))→ G (dstπ1
= dstπ2

), where σ refers to all the variables
in the design except for src. This is illustrated in Figure 1. Like
determinism, secure information flow is not a trace property.

B. Challenges in Mining Hyperproperties

As we see above, some important specifications of SoCs
are only expressible as hyperproperties. Therefore, it would be
desirable to have assertion mining techniques for hyperprop-
erties. However, in comparison to traditional trace properties,
there are three challenges in mining hyperproperties.

Hyperproperties are almost always implications; i.e. formu-
las like ϕ → ψ where both ϕ and ψ are relations between
states. If traces for behavioral mining are generated randomly,
we may end up with no traces that satisfy ϕ, so formulas of the
form ϕ→ ψ are satisfied vacuously. Such vacuously satisfied
formulas are unlikely to be valid or interesting. This is the first
problem in hyperproperty mining: generating good traces in
order to drive the property miner towards likely properties.

We collect traces of the system by simulating it and cap-
turing how values of a set of interesting variables evolve.
Traces collected in such a manner must necessarily be of finite
length. However, a tuple of traces satisfying a hyperproperty
is defined mathematically in terms of infinite-length traces. As
we will demonstrate in § III-B1, the traditional semantics for
satisfaction poses problems in determining satisfaction over
finite traces. Therefore, defining finite trace satisfaction in a
principled manner is another important challenge.

The final challenge is in efficient evaluation of the hy-
perproperties. Since hyperproperties are k-ary relations over
traces, the time taken to check that n traces with maximum
length L satisfy such a relation is O(L×nk). This can quickly
blow-up for long traces or for large sets of traces and efficient
techniques are required to ensure that we test only promising
hyperproperties, and reject invalid hyperproperties early.

C. An Overview of HYPERMINER

In this paper, we address each of the above challenges
and introduce an new framework called HYPERMINER for
mining hyperproperties from behavioral traces of SoC designs.
Figure 2 shows an overview of the HYPERMINER framework.
The framework consists of two main parts: (a) the tracer, and
(b) the miner. The tracer is responsible for generating a set
of traces of SoC execution capturing how the values of the
variables evolve over time. This set of traces is fed to the
miner which uses a formula generator and satisfaction tester
to shortlist hyperproperties satisfied by these traces.2

D. Contributions of This Paper

This paper makes the following novel contributions.
• We introduce a framework for mining temporal hyper-

properties from behavioral traces of SoC designs. To the
best of our knowledge, it is the first framework that mines
temporal hyperproperties, and the first to mine any kind
of hyperproperty in the context of hardware designs.

• We introduce a novel coverage-guided algorithm that
generates traces for hyperproperty mining. Our algorithm
modifies coverage-guided fuzzing with three novelties: (i)
test sketches instead of “seed inputs”, (ii) a test mutator
to converts sketches into concrete tests, and (iii) novel
coverage metrics to help generate meaningful traces.

• Building on the HyperLTL specification language, we
introduce novel optimistic and pessimistic semantics for
satisfaction of formulas over finite traces. We show the
need for these semantics when finding satisfying and
violating traces of a candidate hyperproperty.

We evaluate the HYPERMINER framework on a small but
realistic SoC consisting of two µ-controller cores, accelerators
for AES, SHA, RSA along with an MMU and shared memory.
The framework identifies many tens of likely hyperproperties
in various modules of the SoC design.

II. TRACE GENERATION IN HYPERMINER

This section describes the tracer component of HYPER-
MINER, shown in Figure 2(a). Our tracer is based on coverage-
guided fuzzing [20, 27] with the following novel modifi-
cations: (i) introducing test sketches instead of seed inputs,
(ii) introducing test mutators to concretize sketches, and (iii)
system-level coverage metrics. A test sketch is essentially a
test with “holes”. The “filling of holes” is done by the test
mutator, which takes in a random bitstream from the fuzzer

2Currently, HYPERMINER only outputs likely hyperproperties. However,
it is a straightforward matter to hook-up the output of HYPERMINER to
hyperproperty model checking tool like MCHyper [11] to check their validity.

Test Sketches +
Test Mutator

RTL

Fuzzer

Simulator

traces
Find violating

traces
Find satisfying

traces

Formula
Generator

mined
formulas

inputs coverage

formula ¬φ+ formula φ+

= 0? > T?

(a) Tracer (b) Miner

Fig. 2: Overview of the HYPERMINER framework. The color-coding is as follows. Yellow boxes show new reusable components developed
as part of this paper. Blue boxes show existing components from SoC designs. Violet components are automatically generated. Cyan
boxes show where design-specific inputs are required.

and produces a concrete test without holes. This concrete test
is executed using the register-transfer level (RTL) simulator.
During execution, the fuzzer measures one or more coverage
metrics. The coverage metric is an estimate of which parts
of the design were exercised by the test. Tests that increase
coverage are prioritized for additional mutation.

A. Test Sketches and Test Mutator

We used two kinds of test sketches in our tracing.
a) NOP Sketch: This is a firmware-based test sketch

where a firmware program (e.g. one that performs AES
encryption) has a sequence of NOP instructions inserted into
it. The test mutator concretizes this sketch by replacing the
NOPs with an arbitrary sequence of instructions.

b) FSMWriter Sketch: This sketch has finite state ma-
chine connected to the SoC interconnect that repeatedly gen-
erates write-traffic to a sequence of memory locations (some
of which refer to the on-chip memory-mapped I/O). The
mutator concretizes this sketch by programming the sequence
of address/data accesses made by the FSM.

The NOP Sketch guides the fuzzer towards executing
new types of instructions in the microcontroller while the
FSMWriter sketch generates new memory and memory-
mapped I/O (MMIO) accesses.

B. Coverage Metrics

The coverage metric is used by the fuzzer to evaluate test
quality. A good metric is extremely important for effective
fuzzing. The default coverage metric used by traditional soft-
ware fuzzers like afl-fuzz and libFuzzer is based on
basic block coverage, and therefore inapplicable for hardware
designs. The hardware fuzzer RFUZZ [16] uses mux-coverage:
a measure of how many times select signals were toggled
for the multiplexers (muxes) in the design. We found that
this metric also did not work well; the fuzzer found very
few new paths (i.e. inputs that increased coverage). This is
likely because with a good test most muxes in the design
are already toggled, so finding a new input that toggles
some previously unexercised mux via random mutation is
unlikely. Our insight is that system-level coverage metrics
that correspond to software-visible events are likely to provide
better feedback to the fuzzer. Therefore, we used the following
novel coverage metrics in this work.

a) Instruction Bigrams: the number of unique 2-tuples of
consecutive instructions executed by the primary µ-controller.

b) Memory Access Bigrams: estimates the number of
unique memory access bigrams at the interface to the shared
memory space in the SoC (note this includes MMIO).

These metrics were helpful in guiding the fuzzer towards
tests that either execute new instructions or make new memory
accesses. Results show that this helped the tracer generate
traces with more interesting events for mining.

C. Putting it all together

In typical usage, the tracer is run until a certain number of
traces are generated. These traces are examined by the miner
(shown in Figure 2b) to determine likely hyperproperties that
hold on the collected traces. Note both the sketches/mutator
and the coverage metric need to work in concert in order
to generate good traces. If we have the right sketch but do
not have the appropriate coverage metrics, the fuzzer will be
unable to distinguish good mutations from bad ones. This will
cause it potentially waste a lot of time exploring redundant
or meaningless paths. Similarly, a good coverage metric with
a poor mutator is also useless because there will not be an
easy way for the fuzzer to generate inputs that maximize the
coverage metric. Finally, the use of a mutator that modifies
only a part of the test, as opposed to one that randomizes the
entire test is extremely important for hyperproperty mining.
This ensures that most traces are related to one or more other
traces – they have the same or similar values for various SoC
state variables – thus preventing vacuous satisfaction of the
antecedents in conjectured hyperproperties.

III. HYPERPROPERTY MINING

In this section, we first introduce the hyperproperty speci-
fication language, its syntax and semantics. We then describe
the architecture of the miner component in HYPERMINER.

A. Preliminaries

A transition system M is defined as the tuple 〈S, S0, R, L〉
where S is the set of states of the transition system, S0 ⊆ S
is the set of initial states, R ∈ S×S is the transition relation.
Our definition of the labelling function L : Sk → 2AP is a
little non-standard. L maps k-tuples of states to a set of the
atomic propositions AP. If k = 1, this corresponds to the

standard definition where each state has zero or more atomic
propositions associated with it. However, if k = 2, then every
pair of states has zero or more atomic propositions associated
with it. The k-tuple labels encode relations between traces.

A trace of the system M is a (finite or infinite) sequence
of states π = s0s1s2 . . . si . . . such that s0 ∈ S0 and for all
i ≥ 0, (si, si+1) ∈ R. We will use the notation πi to denote
the i-th element of a trace. In the above example, π0 = s0,
π2 = s2, πi = si, etc. For a finite-length trace π, its length is
given by len(π); len(π) is undefined for an infinite trace. We
will write π[i,∞] for the suffix of the trace π starting from
element i. If len(π) = N , then len(π[i,∞]) ≤ N − i. The set
of all traces of the system M is denoted by ΦM .

B. HyperLTL

ψ ::= ∀π. ψ | ∃π. ψ | ϕ
ϕ ::= APπ1,...,πk | ¬ϕ | ϕ ∧ ϕ | ϕU± ϕ | X± ϕ
± ::= + | −

Fig. 3: HyperLTL Syntax

Figure 3 shows the grammar for the HyperLTL-variant that
is considered in this paper. Formulas are required to be in
prenex form – all quantifiers must appear in the beginning
of the formula. We do not support quantifier alternation. For
simplicity of presentation, we assume the specification formula
is universally quantified. Extending the ideas to existentially-
quantified formulas is straightforward. Atomic propositions
(APs) apply to k-tuples of traces and the specific traces
involved are denoted by the subscript of the AP. The other
logical and temporal operators are standard except for the
introduction of optimistic (superscript +) and pessimistic (su-
perscript −) versions of each temporal operator.

Given the operators in Figure 3, we can define the usual
abbreviations: ϕ ∨ ψ ≡ ¬(¬ϕ ∧ ¬ψ), F± ψ ≡ trueU± ψ,
etc. Note polarity (optimism/pessimism) is preserved in the
above identities. However, negation reverses polarity of opti-
mism/pessimism. For example, G± ψ ≡ ¬F∓ ¬ψ.

π0
1

π0
2

π1

π2

π1
1 π2

1 π3
1

πn1

π1
2 π2

2 π3
2

πn2

. . .

. . .

=x =y =x =y =x

∀π1.∀π2.G
(
(xπ1 = xπ2)→ X (yπ1 = yπ2)

)
Fig. 4: Example traces for the above property.

1) Need for Optimistic and Pessimistic Variants: To see
why optimistic and pessimistic variants are required, consider
the formula ∀π1.∀π2. G

(
(xπ1

= xπ2
) → X (yπ1

= yπ2
)
)

described in § I-A1. The notation vπ1
= vπ2

is syntactic sugar
for an atomic proposition that holds for all pairs of states in

which the valuation of the variable v are equal. Recall the
hyperproperty means that y is a deterministic function of x
with a delay of one cycle. Figure 4 shows two traces of length
n + 1 that appear to satisfy the above formula, but with a
catch. The AP xπ1

= xπ2
holds at steps 0, 2 and n of the

two traces while the AP yπ1
= yπ2

holds at steps 1 and 3 of
the traces. In the final states of the traces, at step n, we have
xπ1 = xπ2 . Since the trace has been truncated at this point,
we cannot determine the value of y at step n+ 1. Therefore,
we cannot determine satisfaction with traditional (Hyper-)LTL.
The optimistic operator G+ allows us to conclude that the
formula is indeed satisfied in such scenarios if some extension
to the trace exists that will satisfy the formula.

One may wonder why we need pessimistic variants in
addition to the optimistic variants. Consider the negation of the
above formula: ∃π1.∃π2. F

(
(xπ1 = xπ2) ∧X¬(yπ1 = yπ2)

)
.

If we use optimistic operators, then the same pair of traces in
Figure 4 satisfies the negated formula as well! This contradic-
tion must be avoided. Therefore, we use optimistic operators
when searching for satisfying traces and pessimistic variants
when searching for counterexamples/violations.

2) Formal Satisfaction Semantics: As in standard Hyper-
LTL [11] without the optimistic/pessimistic variants, the va-
lidity judgement of a property ψ by system M = 〈S, S0, R, L〉
is defined with respect to a trace assignment Π : V → ΦM .
Here, V is a trace variable; recall that ΦM is the set of traces
of the system M . The partial function Π is a mapping from
trace variables to traces. We use the notation Π[π 7→ ρ] to
refer to a trace assignment that is identical to Π except that
the variable π maps to trace ρ. We write Π |=M ψ if the
system M satisfies the property ψ under the trace assignment
Π. We use the notation Π[i,∞] as an abbreviation for the new
trace assignment obtained by taking the suffix starting from
index i of every trace in Π: Π′(π) = Π(π)[i,∞] for every
trace π ∈ dom(Π), where dom(Π) is the domain of Π. We
write Π 6|=M ψ when Π |=M ψ is not satisfied. We write
len(Π) to refer to the length of the minimum length trace in
Π: len(Π) = min {len(π) | π ∈ dom(Π)}. Given the above
definitions, satisfaction semantics are shown in Figure 5. We
say that system M satisfies the property ψ, denoted by M |= ψ
if Π∅ |=M ψ for the empty trace assignment Π∅.

Lemma 1. Equivalence of optimistic/pessimistic variants: The
optimistic and pessimistic variants of the operators coincide
in satisfaction for infinite-length traces.

The proof is by induction on the structure of the formula
and relies on the fact that the additional satisfaction introduced
by the optimistic variants only applies to finite-length traces.
(Recall len(π) is undefined for infinite-length traces.)

C. Overview of the Miner in HYPERMINER

We now describe the miner component in Figure 2. It
consists of a formula generator which outputs candidate Hy-
perLTL formulas. These are checked on the set of collected
traces to: (i) ensure that no violations exist, and (ii) the number
of satisfying traces is more than the threshold T .

Π |=M ∀π. ψ iff for all ρ ∈ ΦM : Π[π 7→ ρ] |=M ψ

Π |=M ∃π. ψ iff exists ρ ∈ ΦM : Π[π 7→ ρ] |=M ψ

Π |=M ψU− ϕ iff there exists i ≥ 0 : Π[i,∞] |=M ϕ

and for all 0 ≤ j < i : Π[j,∞] |=M ψ

Π |=M ψU+ ϕ iff Π |=M ψU− ϕ, or
for all 0 ≤ j < len(Π) : Π[j,∞] |=M ψ

Π |=M X− ψ iff Π[1,∞] |= ψ

Π |=M X+ ψ iff Π |= X− ψ or len(Π[1,∞]) = 0

Π |=M aπ1,...πk iff a ∈ L(Π(π1)0, . . . ,Π(πk)0)

Π |=M ¬ψ iff Π 6|=M ψ

Π |=M ψ ∧ ϕ iff Π |=M ψ and Π |=M ϕ

Fig. 5: Satisfaction semantics for our HyperLTL-variant.

1) Formula Generator: The formula generator produces
candidate formulas for further examination. Our current im-
plementation uses template-based enumeration for generating
these candidate formulas. We use two templates. The first is
of the form ∀π1.∀π2. G (uπ1

= uπ2
)→ G (vπ1

= vπ2
) where

u and v are variables in the design. This is a form of observa-
tional determinism, a secure information flow property [28].
The second is a template of the form ∀π1.∀π2. G (uπ1 =
uπ2

→ vπ1
= vπ2

). As before, u and v are variables in
the design. This captures a deterministic dependency between
two variables in the design. We also enumerated random
formulas including the temporal operators G and X and
variable equalities. We note that extension of this component
to support additional templates and/or static/dynamic analyses
as proposed in past work (e.g. [9, 17, 25]) is straightforward.

2) Finding Violating and Satisfying Traces: The formula
generator outputs a formula in plain HyperLTL without opti-
mistic or pessimistic variants of the operators. The negation
of the optimistic variant is checked against the trace set to
determine if there are any counterexamples for the formula.
If there are none, then the optimistic variant of the original
formula is checked to determine if there are more than T
traces that non-trivially satisfy it. If so, the formula is output.

Example: Suppose the formula generator outputs
G (xπ1

= xπ2
) → G (yπ1

= yπ2
). The optimistic version

of this formula is: G+ (xπ1
= xπ2

) → G+ (yπ1
= yπ2

). This
is equivalent to F− ¬(xπ1 = xπ2) ∨ G+ (yπ1 = yπ2), and
its negation is G+ (xπ1 = xπ2) ∧ F− ¬(yπ1 = yπ2). This
negation is checked on the mined traces to determine whether
a counterexample exists. If none is found, we count satisfying
traces exist for the optimistic variant. If the count is more than
the threshold, the formula is shortlisted for output.

IV. EXPERIMENTAL EVALUATION

This section presents our experimental evaluation of HY-
PERMINER. We present details of the methodology, an
overview of the test SoC design and the experimental results.

A. Implementation and Methodology

We implemented the tracer using afl-fuzz [27] and
Verilator [22] for RTL simulation. Formula generation was
implemented in Python while property satisfaction test-
ing was implemented in C++. In keeping with the fo-
cus of VLSI-SoC 2020, the HYPERMINER and SoC plat-
form have been open-sourced at https://github.com/c0demag/
HyperMiner SourceCode.

1) SoC Overview: We evaluated HYPERMINER by exam-
ining various modules in a small SoC design consisting of two
microcontroller cores and accelerators for AES, SHA, modular
exponentiation, a memory management unit (MMU), shared
memory and I/O devices. The accelerators are controlled using
memory-mapped I/O. The SoC RTL description consists of
about 16000 lines of Verilog. The firmware used for the test
sketches is about 1000 lines of C code.

2) Evaluation Methodology: We collected system-level
traces for this SoC and then tried to mine hyperproperties
within individual modules. We also provide a comparison with
Bach [21], a tool for inferring (non-temporal) hyperproperties
in a functional programming language. We report the number
of hyperproperties found, the time taken to check satisfac-
tion/violation and briefly discuss some mined properties.

B. Results

Table I summarizes the result of our evaluation. We show
a comparison between random mutations and the coverage-
guided mutation strategy for generating traces described in
§ II. We show results for the two hyperproperty templates
used in the formula generator as well as random formula
enumeration (§ III-C1). For each experiment, we report the
number of mined likely hyperproperties (#hp) and the time
taken for mining these hyperproperties in seconds.

TABLE I: Summary of Assertion Mining Results.

Module Random Mutations Coverage-guided Mutations
Template Random Template Random

#hp time #hp time #hp time #hp time

µC 239 561 33 318 310 558 41 96
AES 39 43 12 52 42 115 33 91
SHA 108 83 37 74 152 281 60 102
MMU 178 59 57 59 174 196 25 26

In three out of four cases, the coverage-guided tracing
strategy works better than random mutations. In the fourth
case, the difference for template-based formula enumeration is
minimal (174 vs 178) properties. This supports our claim that
coverage-guided tracing is effective. The specific templates
chosen by us produce many more likely hyperproperties than
random formula enumeration – this is an expected result.

The time taken to evaluate the traces is only a few minutes.
While we do not report detailed results due to a lack of space,
we compared runtime with Bach [21] and found that our
custom-built hyperproperty evaluator was about 200× faster
than the Datalog-based approach proposed in that paper.

https://github.com/c0demag/HyperMiner_SourceCode
https://github.com/c0demag/HyperMiner_SourceCode

Interesting Assertions Mined: : We provide a few exam-
ples of assertions mined by the tool. In the µcontroller, the tool
identified the assertion G (decoderopπ1

= decoderopπ2
→

decoderrdselπ1
= decoderrdselπ2

). This property states that
the decoder’s read-select signal is determined by the current
operation in the decoder. Note the hyperproperty does not
say how the read-select signal is determined by the decoder
operation; this allows it to remain valid even if the encoding of
decoder op is changed. Similar assertions capturing the relation
between input data length and the byte iterator registers were
identified in the AES and SHA modules.

V. RELATED WORK

GoldMine [15, 25] mines assertions automatically using
static analysis and decision trees and uses a formal verifi-
cation engine to check their validity. A-Team [8] introduces
a methodology to mine temporal assertions of the form
G (ϕ→ ψ) by combining coverage analysis with data mining.
Danese et al. [9] is an earlier effort that proposes a similar
methodology but with multiple templates and using static
and dynamic techniques. Ghasempouri [14] present a way to
measure the relevance or “interestingness” of a specification
by the use of contingency tables and support metrics. This
provides a way to order/rank mined assertions. Malburg et
al. [17] propose an approach to mine temporal properties
by building dynamic dependency graphs and deducing the
properties via graph traversal. In comparison to our work, none
of these efforts can mine hyperproperties. Further, these ideas
– the use of static analysis, decision trees, dependency graphs,
ranking assertions, etc. are orthogonal to our approach and can
potentially be incorporated in the formula generator compo-
nent of HYPERMINER to further improve its performance.

A noteworthy effort that does mine hyperproperties of func-
tions, in the context of a pure functional language as opposed
to hardware or SoC designs, is Bach, by Smith et al. [21].
Unlike our work, Bach cannot mine temporal hyperproperties.
Further, as shown in our evaluation, extending it support
temporal properties results in extremely poor performance.

Three-valued semantics for LTL proposed by Bauer et al. [3]
is related to our notion of optimistic and pessimistic operators.
However, their semantics was developed for monitoring and
yields indeterminate for the corner cases similar to Figure 4.
An indeterminate result is not useful for mining, as it does not
tell us whether to shortlist a property.

VI. CONCLUSION

In this paper, we introduced a framework for mining
hyperproperties from execution traces of SoC designs. Our
framework had two components: a tracer that is based on
coverage-guided trace generation and a miner that evaluates
the collected traces to find likely hyperproperties in those
traces. An important theoretical contribution of this paper
are the novel optimistic and pessimistic semantics for Hyper
Linear Temporal Logic (HyperLTL) that enable principled
evaluation of HyperLTL formulas over finite traces. Exper-
iments showed that the framework was effective in finding
interesting hyperproperties in an SoC design.

REFERENCES
[1] JasperGold: Security Path Verification App. https://www.cadence.

com/en US/home/tools/system-design-and-verification/formal-and-static-
verification/jasper-gold-verification-platform/security-path-verification-
app.html?CMP=SVG JasGApp IntDgn, 2020.

[2] Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21(4):181 – 185, 1985.

[3] Andreas Bauer, Martin Leucker, and Christian Schallhart. Monitoring of real-
time properties. In Foundations of Software Technology and Theoretical Computer
Science, pages 260–272. Springer, 2006.

[4] Doron Bustan, Dmitry Korchemny, Erik Seligman, and Jin Yang. SystemVerilog
Assertions: Past, present, and future SVA standardization Experience. IEEE Design
& Test of Computers, 29(2):23–31, 2012.

[5] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. In Workshop on Logic of Programs,
pages 52–71. Springer, 1981.

[6] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K Micinski,
Markus N Rabe, and César Sánchez. Temporal logics for hyperproperties. In
Principles of Security and Trust, pages 265–284. Springer, 2014.

[7] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer
Security, 18(6):1157–1210, 2010.

[8] Alessandro Danese, Nicolò Dalla Riva, and Graziano Pravadelli. A-team: Auto-
matic template-based assertion miner. In Design Automation Conference, pages
1–6. IEEE, 2017.

[9] Alessandro Danese, Tara Ghasempouri, and Graziano Pravadelli. Automatic
extraction of assertions from execution traces of behavioural models. In Design,
Automation & Test in Europe, pages 67–72. IEEE, 2015.

[10] Calvin Deutschbein and Cynthia Sturton. Mining security critical linear temporal
logic specifications for processors. In Workshop on Microprocessor and SOC Test
and Verification (MTV), pages 18–23. IEEE, 2018.

[11] Bernd Finkbeiner, Markus N Rabe, and César Sánchez. Algorithms for model
checking HyperLTL and HyperCTL∗. In Computer Aided Verification, pages 30–
48. Springer, 2015.

[12] Harry Foster, Erisch Marschner, and Yaron Wolfsthal. IEEE 1850 PSL: The Next
Generation. In Design and Verification Conference and Exhibition, 2005.

[13] Tara Ghasempouri, Jan Malburg, Alessandro Danese, Graziano Pravadelli, Goer-
schwin Fey, and Jaan Raik. Engineering of an effective automatic dynamic assertion
mining platform. In Very Large Scale Integration (VLSI-SoC), pages 111–116.
IEEE, 2019.

[14] Tara Ghasempouri and Graziano Pravadelli. On the estimation of assertion
interestingness. In Very Large Scale Integration (VLSI-SoC), pages 325–330. IEEE,
2015.

[15] Samuel Hertz, David Sheridan, and Shobha Vasudevan. Mining Hardware Asser-
tions with Guidance from Static Analysis. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 32(6):952–965, 2013.

[16] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and Koushik
Sen. RFUZZ: coverage-directed fuzz testing of RTL on FPGAs. In International
Conference on Computer-Aided Design, pages 1–8. IEEE, 2018.

[17] Jan Malburg, Tino Flenker, and Görschwin Fey. Property mining using dynamic
dependency graphs. In Asia and South Pacific Design Automation Conference
(ASP-DAC), pages 244–250. IEEE, 2017.

[18] John Mclean. Proving Noninterference and Functional Correctness Using Traces.
Journal of Computer Security, 1:37–58, 1992.

[19] A. Pnueli. The Temporal Logic of Programs. In Foundations of Computer Science,
pages 46–57. IEEE, 1977.

[20] Kostya Serebryany. libFuzzer – a library for coverage-guided fuzz testing. 2015.
[21] Calvin Smith, Gabriel Ferns, and Aws Albarghouthi. Discovering Relational

Specifications. In Foundations of Software Engineering, pages 616–626, 2017.
[22] Wilson Snyder. Verilator and systemperl. In North American SystemC Users’

Group, Design Automation Conference, 2004.
[23] P. Subramanyan and D. Arora. Formal Verification of Taint-Propagation Security

Properties in a Commercial SoC Design. In Design, Automation & Test in Europe,
2014.

[24] P. Subramanyan, S. Malik, H. Khattri, A. Maiti, and J. Fung. Verifying Information
Flow Properties of Firmware using Symbolic Execution. In Design Automation &
Test in Europe, 2016.

[25] Shobha Vasudevan, David Sheridan, Sanjay Patel, David Tcheng, Bill Tuohy, and
Daniel Johnson. Goldmine: Automatic assertion generation using data mining and
static analysis. In Design, Automation & Test in Europe, pages 626–629. IEEE,
2010.

[26] Chenguang Wang, Yici Cai, Qiang Zhou, and Haoyi Wang. ASAX: Automatic
security assertion extraction for detecting Hardware Trojans. In Asia and South
Pacific Design Automation Conference, pages 84–89. IEEE, 2018.

[27] Michal Zalewski. Technical whitepaper for afl-fuzz, 2014.
[28] Steve Zdancewic and Andrew C Myers. Observational determinism for concurrent

program security. In Proceedings of the 16th IEEE Computer Security Foundations
Workshop, pages 29–43. IEEE, 2003.

[29] Tong Zhang, Daniel Saab, and Jacob A Abraham. Automatic assertion generation
for simulation, formal verification and emulation. In IEEE Computer Society
Annual Symposium on VLSI, pages 471–476. IEEE, 2017.

https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html?CMP=SVG_JasGApp_IntDgn
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html?CMP=SVG_JasGApp_IntDgn
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html?CMP=SVG_JasGApp_IntDgn
https://www.cadence.com/en_US/home/tools/system-design-and-verification/formal-and-static-verification/jasper-gold-verification-platform/security-path-verification-app.html?CMP=SVG_JasGApp_IntDgn

